
design of online health communities, where the
structure of social relations can be explicitly
determined on the basis of individuals’ health
characteristics.
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Specialized Face Learning Is
Associated with Individual
Recognition in Paper Wasps
Michael J. Sheehan* and Elizabeth A. Tibbetts

We demonstrate that the evolution of facial recognition in wasps is associated with specialized
face-learning abilities. Polistes fuscatus can differentiate among normal wasp face images more
rapidly and accurately than nonface images or manipulated faces. A close relative lacking facial
recognition, Polistes metricus, however, lacks specialized face learning. Similar specializations for
face learning are found in primates and other mammals, although P. fuscatus represents an
independent evolution of specialization. Convergence toward face specialization in distant taxa as
well as divergence among closely related taxa with different recognition behavior suggests that
specialized cognition is surprisingly labile and may be adaptively shaped by species-specific
selective pressures such as face recognition.

Thecognitive mechanisms underlying learn-
ing abilities are surprisingly similar across
taxa as diverse as mammals, birds, insects,

and mollusks (1). Although the mechanisms that
underlie learning are broadly generalized across
animals, there is increasing evidence that learning
abilities are adaptively shaped by species’ ecology
and can be highly specialized (2). One of the most
striking examples of specialized cognition is spe-
cialized face learning found in some mammals,
including humans (3–5). Individual face recog-
nition is an important aspect of human social

interactions, and our brains process the images of
normal conspecific faces differently than any other
images (6). Further, individual recognition is a
type of complex social behavior that could favor
specialized cognition (7) because it requires flex-
ible learning and memory and has the potential to
dramatically increase cognitive demands. How-
ever, the claim that face specialization is an
adaptation to facilitate individual recognition has
been contentious, in part because it is unclear
whether face learning is based on conservedmech-
anisms or has evolved independently in multiple
mammalian lineages (8, 9). If face specializa-
tion is an adaptation to facilitate face recognition,
we predict that specialization will be associated
with the evolution of facial individual recognition
across distant taxa.

Paper wasps are a good system for examining
the evolution of face specialization because
closely related wasp species differ in their ability
to individually recognize conspecific faces. The
paper wasp, Polistes fuscatus, has variable facial
features that are used to recognize individual
conspecifics (10, 11). Visual recognition is pos-
sible in Polistes wasps because they have acute
vision (12) and live in well-lit nests. P. fuscatus
nests are often initiated by groups of cooperating
queens, in which relative reproduction is deter-
mined by a strict linear dominance hierarchy
(13, 14); individual recognition stabilizes social
interactions and reduces aggression within these
cooperative groups (15). Some wasp species, such
as Polistes metricus, typically nest alone (16) and
therefore lack competition among queens. Soli-
tary nest founding is associated with a lack of
facial pattern variability (17), and experiments
have shown that P. metricus does not recognize
conspecifics as individuals (18).

We tested the adaptive evolution of spe-
cialized face learning by comparing face spe-
cialization in P. fuscatus and P. metricus. We
predicted that P. fuscatus will learn normal face
images faster and more accurately than nonface
images or manipulated faces (Fig. 1), whereas
P. metricuswill not. Comparing learning of normal
and manipulated face images (Fig. 1) provides
a particularly good test of face specialization be-
cause manipulated faces are composed of the same
colors and patterns as those of normal faces (table
S1), but alteration may prevent the perceptual
system from identifying the stimuli as faces. We
tested learning by training wasps to discriminate
between two images using a negatively reinforced
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T-maze (fig. S1) (19). The floor of the entire maze
was electrified, except for a “safety zone” in one
arm of the maze, which was consistently as-
sociated with one image in a pair. The position of
the safety zone switched across trials in a predeter-
mined pseudo-random order. Wasps were placed
in an antechamber, allowed to acclimate, and then
released into the electrified maze for 2 min. A
wasp “chose”when it entered a chamber in one
of the arms of the maze. Each wasp was a healthy
wild-caught adult female naïve to the training
paradigm and was tested only once. We trained
12 wasps for 40 consecutive trials on each im-
age type (Fig. 1). We compared the speed of ac-
quisition using generalized estimating equations
(GEEs) and total number of correct choices be-
tween image treatments using 2-by-2 c2 tests.

We found that individual recognition is as-
sociated with specialization for conspecific face
learning in paper wasps. P. fuscatus distinguished

pairs of normal faces more rapidly and accurately
than nonface andmanipulated face images (GEE,
fullmodel:Waldc2 = 32.06, df = 4,P<0.0001, n=
2400 trials) (Fig. 2, A and B). These results are
surprising because Hymenopteran visual systems
are predicted to distinguish between high-contrast
patterns more readily than complex images of
natural scenes, such as faces and caterpillars (20).
Nevertheless, P. fuscatus that were trained to dis-
criminate faces learned faster (for trials 1 to 30:
GEE, Wald c2 = 5.61, P = 0.018, n = 720 trials)
and made more correct choices than did wasps
trained to discriminate simple patterns (c2 = 9.1,
P = 0.0026, n = 960 trials) (Fig. 3A). A greater
familiarity with faces than patterns cannot ex-
plain the result because paper wasps are gener-
alist visual predators of caterpillars (21) yet learn
to discriminate between pairs of caterpillars more
slowly (GEE, Wald c2 = 25.45, P < 0.0001, n =
960 trials) and with fewer correct choices than

between pairs of faces (c2 = 45.02, P < 0.0001,
n = 960 trials) (Fig. 3A). The most striking evi-
dence for specialized face learning in P. fuscatus
is that they have trouble learning faces without
antennae. Wasps learn pairs of antenna-less faces
more slowly and less accurately than normal faces
(lower rate of acquisition GEE, Wald c2 = 13.98,
P< 0.0001, n= 960 trials; and fewer correct choices
c2 = 18.85, P < 0.0001, n = 960 trials). Therefore,
antennae are an essential cue for effective face
recognition. In a separate image manipulation,
we rearranged the components of the wasp face
and found that facial configuration also influences
learning. Wasps trained to discriminate pairs of
rearranged faces had lower rates of acquisition
(GEE,Wald c2 = 20.18, P < 0.0001, n = 960 trials)
and made fewer correct choices (c2 = 18.28, P <
0. 0001, n = 960 trials) (Fig. 3A) than did wasps
trained to discriminate pairs of normal faces.
Taken together, these data suggest thatP. fuscatus
do not use general pattern- or shape-discrimination
abilities to recognize conspecific faces. Instead,
faces appear to be treated as unique visual inputs.

We next examined how face specialization
co-varies with individual face recognition by test-
ing learning in P. metricus, which lacks individual
recognition (18). P. metricus showed no evidence
of specialized face learning. In fact, wasps trained to
discriminate pairs of face images performed no bet-
ter than chance (c2 = 0.2, P = 0.65, n = 480 trials)
(Fig. 3B). In contrast to P. fuscatus, P. metricus
had higher rates of acquisition when trained to
discriminate patterns and caterpillars than conspe-
cific faces (GEE full model: Wald c2 = 8.48, df =
2, P = 0.014, n = 1440 trials; patterns: Wald c2 =
8.27, P = 0.004, n = 960 trials; caterpillars: Wald
c2 = 4.02, P = 0.045, n = 960 trials) (Fig. 2C).
Additionally,P.metricus choose the correct pattern
and caterpillar images more often than the correct
conspecific face image (pattern: c2 = 10.47, P =
0.0012, n = 960 trials, caterpillar: c2 = 7.37, P =
0.0066, n = 960 trials) (Fig. 3B).

To ensure that the difference in face-learning
abilities between the two species is caused by
cognitive differences rather than the particular

Fig. 1. Images used for training wasps. Wasps were trained to discriminate between pairs of images. Pairs
are shown in the same row except for P. metricus face images. For P. metricus face images, the
unmanipulated faces in the top row were paired with themanipulated images of the other face (for example,
top left paired with middle left and bottom left). Image statistics for all images are provided in table S1.

Fig. 2. P. fuscatus learned to discriminate between pairs of conspecific face
images faster than (A) other images such as patterns and caterpillars and (B)
manipulated face images. (C) P. metricus learned to discriminate between pairs of

patterns and caterpillars faster than conspecific face images. Line graphs show the
mean number of correct choices (TSEM) per 10 trial blocks. Chance performance
is 5 correct choices per 10 trial blocks; n = 12 wasps for each treatment.
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face stimuli used, we trained each species to dis-
criminate heterospecific face images. P. fuscatus
learned the face stimuli of both species more
rapidly and made more correct choices than did
P. metricus (rate of aquistion GEE full model:
Wald c2 = 39.43, df = 2, P < 0.0001, n = 1920
trials; P. fuscatus faces: Wald c2 = 32.38, P <
0.0001, n = 960 trials; P. metricus faces: Wald
c2 = 7.11, P = 0.008, n = 960 trials; number cor-
rect choices, P. fuscatus faces: c2 = 42.52, P <
0.0001, n = 960 trials; P. metricus faces: c2 =

10.05, P = 0.0015, n = 960 trials) (Fig. 4, A and
B). Although P. metricus learned face images
poorly, they were able to discriminate between
pairs of P. fuscatus faces; wasps performed bet-
ter than chance in the last 10 trials (65.8%; c2 =
5.54, P = 0.019, n = 120 trials) (Fig. 4A). We fur-
ther analyzed whether P. metricus treat faces
as unique visual inputs by examining how an-
tennae removal influenced face learning. Unlike
P. fuscatus, digital removal of the antennae
from images did not reduce the number of correct

choices (c2 = 3.33, P= 0.068, n = 960 trials) (Fig.
4C) or rates of learning (GEE,Wald c2 = 2.23,P=
0.14, n = 960 trials), providing further evidence
that faces are not special for P. metricus. Differ-
ences in face learning between the two species
cannot be attributed to general differences in
visual learning because both species learned to
discriminate between pairs of artificial patterns
and caterpillars at the same rate and with the same
accuracy (rate of acquisition GEE full model:
Wald c2 = 2.66, df = 2, P = 0.27, n = 1440 trials;
number correct choices patterns: c2 = 3.47, P =
0.063, n = 960; caterpillars: c2 = 1.52, P= 0.22,
n = 960 trials) (Fig. 4D). Therefore, P. fuscatus
and P. metricus differed only in their ability to
learn normal face stimuli. Differences in visual
acuity between the two species cannot account for
the results because morphological measurements
of facet diameter demonstrate that P. metricus
is likely to have more acute vision than that of
P. fuscatus (table S2 and fig. S2). Instead, special-
ized face learning is an evolutionarily labile trait
that tracks individual recognition.

Overall, our data suggest that selection for
efficient individual recognition has led to the
adaptive evolution of specialized face learning in
the paper wasp P. fuscatus. Specialized face learn-
ing provides a remarkable example of convergent
evolution betweenwasps andmammals.Although
mammals and wasps have dramatically different
eyes and neural structures (22, 23), specializations
for recognizing conspecific faces have arisen in-
dependently in both groups. Although special-
ized face learning in mammals and wasps are
phenomenologically similar, they are likely to
have different mechanistic bases. Face learning
in primates and sheep is highly specialized, in-
volving multiple brain regions and face-specific
neurons (3, 24). Examining whether similar neu-
ral signatures of cognitive specialization are found
in the “miniature” brain of an insect (25) provides
an interesting avenue for future comparisons. The
evolutionary flexibility of specialized face learn-
ing is striking and suggests that specialized cog-
nition may be a widespread adaptation to facilitate
complex behavioral tasks, such as individual
recognition.
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Modeling Effects of Environmental
Change on Wolf Population Dynamics,
Trait Evolution, and Life History
Tim Coulson,1* Daniel R. MacNulty,2† Daniel R. Stahler,3 Bridgett vonHoldt,4

Robert K. Wayne,5 Douglas W. Smith3

Environmental change has been observed to generate simultaneous responses in population dynamics,
life history, gene frequencies, and morphology in a number of species. But how common are such
eco-evolutionary responses to environmental change likely to be? Are they inevitable, or do they
require a specific type of change? Can we accurately predict eco-evolutionary responses? We
address these questions using theory and data from the study of Yellowstone wolves. We show that
environmental change is expected to generate eco-evolutionary change, that changes in the
average environment will affect wolves to a greater extent than changes in how variable it is, and
that accurate prediction of the consequences of environmental change will probably prove elusive.

Populations of the same species living in
different environments often differ geneti-
cally or phenotypically. For example, the

frequency of the genotype that determines wheth-
er a gray wolf (Canis lupus) has a black or gray
coat varies with forest cover throughout North
America (1). Similarly, wolves that predominant-
ly feed on large prey are typically larger than those
that specialize on smaller species (2). Numerous
studies of a range of species also have reported
that population dynamics and life history can vary
across populations living in different environ-
ments (3, 4). In addition to these cross-population
differences, environmental change within a pop-
ulation can generate rapid change in life history
parameters such as generation length, in pheno-
typic trait and genotype distributions, and in
population dynamics (5, 6). The eco-evolutionary
consequences of environmental change are some-
times repeatable (7) but are frequently not (8).
The wide range of population responses means
that predicting likely dynamics has become one
of the greatest challenges currently facing biology

(5). This is particularly true for species, such as
the gray wolf, that play important roles in structur-
ing ecosystems, because their response to environ-

mental change can have cascading effects across
trophic levels (9). Given that environmental change
can lead to potentially complex genetic, pheno-
typic, life history, and demographic responses,
how can its likely consequences be explored?
We show how integral projection models (IPMs)
(10) provide a powerful framework to simulta-
neously investigate the ecological and evolu-
tionary consequences of environmental change.
We developed, applied, and analyzed one to ex-
plore how Yellowstone wolves may respond to
environmental change.

Yellowstone National Park has experienced
substantial environmental change in recent dec-
ades, with elk numbers declining, bison numbers
increasing, and woody vegetation regenerating
in some areas. These changes have been attri-
buted variously to climate change, fluctuations in
culling rates, and the reintroduction of wolves
(11–14). Change is ongoing, with elk and bison
numbers still trending in the same directions and
further climate change being predicted (15). The
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Fig. 1. (A to D) Graphical representation of the IPM that maps the bivariate distribution of genotype and body
weight at time t to a new distribution at time t + 1. Functions (B) and (D) are probability density functions
showing the range of y values for each x value; both of these functions are identical across genotypes.
Associations between body weight and both survival and reproductive success varied with genotype, whereas
growth rates and inheritance did not. Equations for these functions and parameter values can be found in tables
S1 and S2. The body weight and genotype distributions at times t and t + 1 are, respectively, on the right and
left of the functions to provide a graphical representation of the mathematical structure of the IPM (SOM).
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