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Lessons from the multitudes: in
sights from
polyembryonic wasps for behavioral ecology

Paul J Ode1, Tamar Keasar2 and Michal Segoli3
Even for parasitic Hymenoptera, polyembryonic wasps are

unusual creatures. Two features in particular, allow for novel

exploration of major questions in behavioral ecology: the

production of multiple offspring per egg and, in some species,

the production of a soldier caste. Because final brood sizes of

polyembryonic species are not constrained by trade-offs

between current and future parental reproductive effort, we can

clearly examine the selective forces at play that drive the

balance between the number of offspring and their body size.

Polyembryony also provides excellent opportunities to

compare the performance of identical genotypes under

different environmental conditions. Finally, polyembryonic

species can provide unique tests of how genetic conflicts at

multiple levels are resolved.
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Introduction
Polyembryony is a developmental mode whereby a single

egg gives rise to multiple, genetically-identical offspring.

Sporadic polyembryony is a very widespread phenome-

non across all animal groups including humans. Obligate

polyembryony is far more restricted in distribution; in the

insects, it occurs only in two orders: the Hymenoptera (in

four parasitoid families: Dryinidae, Encyrtidae, Braconi-

dae, and Platygastridae) and the parasitic Strepsiptera

[1,2]. Polyembryony involves the production of yolk-poor

eggs that undergo complex genetic [3,4], endocrine [1],

and developmental [2,5,6] processes, many of which are

unique to these species. With few exceptions (e.g. [7,8]),
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nearly all developmental studies have involved the encyr-

tid wasp Copidosoma floridanum.

Polyembryony provides several selective advantages for

parasitoids. First, polyembryonic development may pro-

vide a way for ovipositing females to overcome egg

limitation. In other words, the cloning of embryos allows

higher reproductive output without laying additional

eggs. Second, it may alleviate conflict and aggression

(which often lead to mortality) between genetically-iden-

tical larvae that develop within the same host. Finally,

because all polyembryonic parasitoids are koinobionts,

females may not be able to accurately predict the future

quality of the host for their developing offspring at the

time of oviposition. By dynamically adjusting the number

of clonal divisions to the size of the growing host, brood

size can be fitted to the carrying capacity of the host when

that final carrying capacity cannot be foreseen by the

parents [9,10].

The reasons for the rarity of polyembryony in parasitoids

are far from clear. Craig et al. [9,11] suggested that

polyembryony is costly because it clones an unproven

genotype (different from that of the parent) at the

expense of genetic diversity within a brood. However,

this cost may be relatively small, because each mother

produces several, genetically-distinct clones through reg-

ular sexual reproduction. Thus, polyembryony leads to a

loss of within-clone genetic variation, but might not affect

the overall population-level genetic diversity [12].

Two features of polyembryony permit unique tests of

several important aspects of behavioral ecology [13].

First, as discussed below (see ‘Clutch versus brood-size’),

polyembryony typically results in offspring brood sizes

and sex ratios that are very different from the number and

sex of eggs laid by the mother. This feature allows for

unusually straightforward tests of the size–number trade-

off problem as well as the role of sibling conflict in driving

offspring sex ratio patterns. Second, some species within

the Encyrtidae have evolved a larval caste system, where

soldier larvae defend their clone-mates from intra-specific

and inter-specific competitors (see ‘Soldiers, sex ratios,

and sociality’, below). This raises the possibility of using

these polyembryonic species to explore aspects of social-

ity as well as to study genetic conflict phenomena such as

sibling rivalry and parent–offspring conflict. In addition,

polyembryonic species can be excellent systems to dif-

ferentiate between genetic and environmental effects on

phenotype because it is easy to compare the effects of
www.sciencedirect.com
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different environments on different individuals of the

same genotype [14,15�].

Clutch versus brood size
One of the most remarkable qualities of polyembryony is

the apparent disconnect between maternal decisions —

both clutch size (number of eggs laid per host) and sex

allocation — and the resulting brood phenotype (total

number of wasps emerging from a host and offspring

sex ratios). While clutches often comprise only 1–2 eggs,

several polyembryonic encyrtids produce broods that

exceed 1000 offspring; in C. floridanum as many as

3400 offspring can arise from a single egg [2,16]. As a

result, the investment in any one clutch is not expected to

greatly constrain future reproductive effort, a confound-

ing issue when trying to study clutch size decisions in

monoembryonic species. When all brood-mates are

genetically identical, parent–offspring and sibling conflict

are also absent. These features permit exceptionally clean

tests of classic questions in behavioral ecology including

clutch size decisions and trade-offs between individual

body size and the number of offspring per brood. As

described below, such tests have received some attention

to date in polyembryonic species.

Within the genus Copidosoma, ovipositing females typi-

cally lay clutches of either one or two eggs per host, which

clonally divide to produce single-sex broods (all-male or

all-female) or mixed-sex broods (originating from one

male and one female egg). Whether one or more eggs

are laid per host depends in part on host encounter rate,

with low encounter rates resulting in a higher proportion

of mixed-sex broods whereas high encounter rates result

in a higher proportion of single-sex broods [17,18]. This

maternal clutch size and sex allocation pattern has been

interpreted in the context of mating opportunities for

adult offspring (see ‘Soldiers, sex ratios, and sociality’ and

‘Future directions’ sections, below).

In species that produce broods of multiple offspring,

there is a continuum of ways to partition limited resources

among offspring ranging from producing few, relatively

large body-sized progeny to producing many, relatively

small body-sized progeny. The optimal balance point

between individual body size and brood number is the

one that maximizes the product of brood number and per

capita offspring fitness [19–21]. Body size has been

repeatedly shown to influence life history traits (i.e.

survivorship, fecundity, and age at maturity) that are

related to other traits linked to fitness such as dispersal,

mating ability, and competitive ability [22,23], implying

that selection acts on both number of individuals per

brood and body size. Virtually all empirical studies of the

size–number trade-off have shown that observed clutches

comprise fewer individuals than the predicted optimum

[20,21,24]. The most widely accepted explanation for this

discrepancy is that other trade-offs such as those between
www.sciencedirect.com
present and future reproductive effort [23,25,26], parent–

offspring conflict, or sibling rivalry obscure the size–

number trade-off [20,27]. These trade-offs are largely

absent in polyembryonic species, permitting examination

of the role of mating systems as selective forces on the

body size–brood number trade-off. Furthermore, the

influence of sibling rivalry on the size–number trade-

off can be studied in the absence of present vs. future

reproductive effort trade-offs. A second, less appreciated,

reason for the discrepancy noted above is the fact

that environmental conditions determining the optimal

trade-off point often fluctuate spatially and temporally.

Variation in such environmental conditions that affect

reproductive success across generations can select for a

phenomenon known as ‘bet-hedging’ [28]. Key to under-

standing how bet-hedging can be advantageous is recog-

nizing that selection acts on the geometric mean rather

than the arithmetic mean of a fitness related trait.

Decreasing variance of fitness across generations can

increase the geometric mean even if the arithmetic mean

is reduced [28]. Therefore, a clutch size that is smaller

than the predicted optimum (based on within-generation

conditions) may be selected for if this reduces across

generation variation in this trait. Thus, both bet-hedging

and current vs. future reproductive effort trade-offs pre-

dict lower clutch sizes compared to the theoretical pre-

diction; polyembryonic species permit the study of the

role of bet-hedging in the absence of current vs. future

reproductive effort trade-offs [29,30�].

A handful of studies of Copidosoma species suggest that

all-male and all-female broods have different trade-off

optima, possibly reflecting different selective pressures

experienced by males and females as adults. In a study of

Copidosoma bakeri that explicitly examined differences in

the optima between all-male and all-female broods

[31,32�], all-female broods comprised fewer, larger

body-sized individuals compared to all-male broods. Copi-
dosoma sosares [33,34] exhibits a similar pattern where all-

female broods contain fewer, larger-bodied individuals.

In the case of the univoltine C. sosares, females emerge,

mate, and overwinter before they are able to mature eggs

and locate hosts the following spring. Immediately after

emerging, males (from both mixed-sex and single-sex

broods) mate locally with females from nearby all-female

and mixed-sex broods (multiple broods synchronously

emerge within the same host plant). Unlike females,

males die within a few days. Given these life history

differences between the sexes, there is a premium placed

on large body-sized females compared to males, as larger

females are more likely to successfully overwinter and

find hosts the following spring (at the cost of fewer

females per brood) [33]. In contrast, all-male broods of

C. floridanum and Copidosoma koehleri contain fewer,

larger-bodied individuals compared to all-female broods

[16,35–37]. It is tempting to infer that such differences

between male and female broods in the trade-off optima
Current Opinion in Insect Science 2018, 27:32–37
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result from sex-differences in the relationship between

body size and reproduction (e.g. finding and acquiring

mates, dispersal, overwintering); however, little is known

about mating and reproduction in the field in any of these

species (see ‘Future directions’, below). Interestingly,

males produced by mated females of C. koehleri form

larger clones than sons of virgin females, suggesting that

epigenetic effects of mating status affect offspring num-

ber and size [38].

Soldiers, sex ratios, and sociality
In several polyembryonic encyrtid wasps, a proportion

of embryos (most commonly, females) develop into

‘precocious’ or ‘soldier’ larvae. Soldiers develop earlier

and differ morphologically from their clone-mates that

eventually develop into reproductively competent adults.

Soldier larvae never become adults and die within the

host prior to the emergence of their genetically identical

siblings [39–42]. Two functions have been attributed to

soldier larvae [43�]: first, ‘sex ratio-conflict hypothesis’ —
adjusting the secondary sex ratio (sex ratio of the brood of

adult offspring) in mixed-sex broods, and second, ‘brood-

benefit hypothesis’ — protecting their clone-mates from

intra-specific or inter-specific competitors inside the host.

Tests of the sex ratio-conflict hypothesis

Whereas maternal clutch size and sex allocation

decisions dictate the distribution of single-sex and

mixed-sex broods (see above), asymmetries in prolifera-

tion and survival between male and female clones within

mixed-sex broods throughout larval development can

greatly modify adult offspring sex ratios. Even within a

species, offspring sex ratios of mixed-sex broods can be

incredibly variable; in C. floridanum for instance, sex ratios

can range from more than 80% male to >99% female

despite arising from a male and a female egg [16]. In

several polyembryonic encyrtids, offspring sex ratios

within mixed-sex broods are mediated in part by soldier

larvae that kill reproductive larvae from competing clones

[40]. Due to relatedness asymmetries arising from hap-

lodiploidy (whereby diploid females develop from fertil-

ized eggs and haploid males develop from unfertilized

eggs; a characteristic of all Hymenoptera), sisters are less

related to their brothers (r = 0.25) than are brothers to

their sisters (r = 0.5). Within mixed-sex broods of C.
floridanum, female clones produce soldiers earlier and

in greater numbers than male clones [16,40], and male

soldiers are less aggressive than female soldiers [44,45].

Consequently, female soldiers selectively kill male

embryos resulting in a strongly female-biased sex ratio

in the emerging brood. The significance of the soldier

caste in sex ratio adjustments has also been supported by

the results of a theoretical model based on the biology of

C. floridanum [46]. In C. koehleri, soldiers are exclusively

female and offspring ratios in mixed-sex broods are also

female-biased, further supporting this hypothesis [47].

However, in a third species (C. bakeri), male and female
Current Opinion in Insect Science 2018, 27:32–37
soldiers are equally abundant, and are mostly aggressive

toward inter-specific competitors. Consequently, the sec-

ondary sex ratios of mixed-sex broods are �0.5 [48]. In

C. sosares, only a single soldier larva is produced regardless

of sexual composition of the brood [49] and sex ratios of

mixed-sex broods are relatively unbiased [33]. These

variations may reflect differences among polyembryonic

species in the intensity of the conflict over sex ratio.

Whether biased sex ratios represent a conflict of interest

between brothers and sisters (i.e., sibling rivalry) depends

on the mating structure of the population in which these

mixed-sex broods exist. If brothers only have opportu-

nities to mate with sisters that shared the same host, then

both brothers and sisters should favor a strongly female-

biased sex ratio and no genetic conflict of interest should

exist. As mating opportunities for brothers away from the

host increase, the intensity of conflict over within-brood

sex allocation should increase. Resolution of this conflict

is mediated in large part by the action of soldier larvae.

Observations that bothmales and females of some species

disperse immediately after emergence (e.g. C. floridanum;
[16,40]) suggest that such conflicts do exist. However, a

solid understanding of the mating structure of most field

populations of polyembyronic parasitoids is lacking.

While interactions within the larval brood modify the

secondary sex ratios, they can also exert potentially con-

flicting selective pressures on the primary sex ratios

(clutch sex ratio of eggs laid by the adult females). In

parasitoid species with unequal competitive ability of

males and females, sexual selection is expected to

favor increased production of the weaker competitors

[50,51]. This should select for excess male production

in polyembryonic species with female soldiers, while

competition between brothers for mates could select

for female-bias. A simulation model that incorporates

these contradictory selective pressures, based on the life

history of C. koehleri, predicts that a male-biased sex

allocation would eventually evolve. The bias is expected

to become more extreme as the probability of competi-

tion between clones increases. Both predictions have

been confirmed experimentally [52].

Tests of the brood-benefit hypothesis and implications

for sociality

As a non-reproductive caste, soldiers are widely appre-

ciated to defend their clone mates against multi-parasit-

ism (where individual hosts are parasitized by females of

different species) and superparasitism (where individual

hosts are parasitized by two or more females of the same

species) [35,53,54]. Moreover, soldiers were directly

observed to aggressively attack both inter-specific and

intra-specific potential competitors, in vitro [39,42,45];

and the presence of a soldier larva was shown to reduce

the survival of a competitor inside the host, in vivo
[35,45,54]. Finally, in C. floridanum, soldier development
www.sciencedirect.com
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is plastic, with more soldiers being produced in the

presence of competitors [41,55�]. The defensive soldier

function is dependent on their ability to discriminate kin

from non-kin. Soldiers were indeed shown to discriminate

and adjust their aggression towards competitors according

to their relatedness [35,42].

The sacrificial nature of the soldiers may be considered as

either altruistic (for the benefit of their genetically iden-

tical clone-mates) or spiteful (against low-relatedness

competitors), and is consistent with kin-selection theory

[46]. Accordingly, the evolution of the soldier caste is

often considered as equivalent to the evolution of non-

reproductive castes in eusocial insects [39,42,46]. How-

ever, it should be cautioned that polyembryonic wasps do

not share many of the basic characteristics that are

thought of as pre-adaptations to eusociality such as paren-

tal care or cooperative breeding, suggesting a different

evolutionary path.

Future directions
As discussed above, polyembyronic species provide rich

opportunities for exceptionally clean tests of behavioral

ecology theory. Largely through studies of a handful of

Copidosoma species (C. bakeri, C. floridanum, C. koehleri,
and C. sosares), our understanding of the behavioral ecol-

ogy (esp., clutch size, sex ratios, caste systems and social-

ity) of this fascinating group of organisms has vastly

improved. Similar sets of studies with non-encyrtid poly-

embryonic species with different life history traits and

host use patterns will undoubtedly broaden and enrich

our understanding of not only the behavioral ecology of

polyembryonic species, but the field of behavioral ecol-

ogy more generally.

At this point, one of the most pressing needs for future

research is a better understanding of the fitness conse-

quences of body size for males and females in the field.

Also needed are better, direct field measurements of

mating systems of polyembyronic species. This will pro-

vide desperately needed context for more fully under-

standing many aspects of the behavioral ecology of this

group of organisms including the selective forces deter-

mining the outcome of the body size–clutch number

trade-off and sibling conflict problems.

Finally, we need better phylogenies of polyembryonic

species (e.g. [56,57]) and their monoembyronic relatives

onto which we can map behavioral, ecological, develop-

mental, and morphological traits to understand their

evolution within these groups. For example, such a com-

parative phylogenetic approach is needed to decipher

whether the evolutionary roots of polyembryony lie in

solitary or gregarious parasitoid clades. With respect to

behavioral ecology, detailed phylogenies would allow

testing for evolutionary constraints that might shape

salient traits, such as clone and body sizes, soldier
www.sciencedirect.com
number, and function. A second challenge is to estimate

the physiological cost of the proliferation process, as a

potential barrier to the shift from monoembryony to

polyembryony within evolutionary clades. An intriguing,

but as yet untested, explanation for this cost is the long

period of time spent as embryos in polyembyronic spe-

cies. Whereas larvae may be able to defend themselves to

some extent, embryos likely cannot; this would make

polyembryony costly relative to monoembryonic species.

The production of a soldier caste may be one way to

reduce this cost. Indeed, clades of polyembryonic wasps

that produce soldiers (i.e. the copidosomatine encyrtids)

are more speciose than other clades of polyembryonic

species.
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