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The evolution and maintenance of social learning, in competition
with individual learning, under fluctuating selection have been
well-studied in the theory of cultural evolution. Here, we study
competition between vertical and oblique cultural transmission
of a dichotomous phenotype under constant, periodically cycling,
and randomly fluctuating selection. Conditions are derived for
the existence of a stable polymorphism in a periodically cycling
selection regime. Under such a selection regime, the fate of a
genetic modifier of the rate of vertical transmission depends on
the length of the cycle and the strength of selection. In gen-
eral, the evolutionarily stable rate of vertical transmission differs
markedly from the rate that maximizes the geometric mean fit-
ness of the population. The evolution of rules of transmission has
dramatically different dynamics from the more frequently studied
modifiers of recombination, mutation, or migration.

periodic selection | phenotypic polymorphism | modifier theory |
fitness optimum | evolutionary stability

Cavalli-Sforza and Feldman (1) distinguished two forms of
nonparental phenotypic transmission in the context of cul-

tural evolution. Horizontal transmission occurs when a trait is
passed between members of the same generation and is analo-
gous to transmission of an infectious agent. Oblique transmission
to offspring is from nonparental members of the parental gener-
ation. Evolution under either of these is expected to be more
rapid than under purely vertical (i.e., parent-to-offspring) trans-
mission (2, 3).

Oblique transmission occurs via some mechanism of social
learning, which may include imitation or active teaching. There
has been an interesting debate over the past 30 y concerning
the conditions under which social learning would have an advan-
tage over individual learning or vertical (including genetic) trans-
mission. This debate is usually couched in terms of the mode
and tempo of environmental fluctuations that would affect fit-
ness and hence, evolution (4–11). Mathematical analyses of mod-
els of competition between individual and social learning have
generally shown that social learning has an advantage when
the environment does not fluctuate too frequently. However,
when environmental changes are very frequent, individual learn-
ing is favored, while innate (genetic) determination of the trait
does best when periods between environmental change are long
on average.

In some situations, oblique transmission of biological mate-
rial is possible. In bacteria, phenotypes might be determined
by heritable mobile genetic elements, such as phages (12), plas-
mids (13), integrons (14), and transposons (15). Similarly, some
phenotypes are determined by genes that are commonly con-
verted by uptake of foreign DNA (i.e., transformation) (16). In
these cases, inheritance of a phenotype may combine vertical
transmission from the parent cell and oblique transmission from
other cells.

In some animals, transmission of microbes may occur during
sharing or manipulation of food or other consumable resources
during a social interaction. Although transmission of the micro-
biome in humans is likely to be mostly vertical (17), in other
organisms, there is multigenerational food sharing, during which

symbionts from the parental cohort may be transmitted obliquely
to younger individuals (18). In such cases, fluctuations in the
resource type or availability may have fitness effects that depend
on features of the transmitted microbiome. This ecological per-
spective on community transmission is stressed by van Opstal and
Bordenstein (19), who emphasize the “need to consider the rel-
ative roles of vertical and horizontal transmission of microbial
communities.”

Another perspective on the evolutionary consequences of fluc-
tuating environments (and as a result, fluctuating selection)
derives from the phenomenon of phenotypic switching (20–25).
In these studies, mutation causes the organism to switch pheno-
types (usually treated as haploid genotypes), and the problem
has usually been couched in terms of the optimal rate of muta-
tion in models where the phenotypic fitness fluctuates over time.
These models did not include social learning, and the evolution
was regarded as a mode of bet-hedging against future environ-
mental change. Optimal (that is, evolutionarily stable) mutation
rates depend on many features of the fluctuations (for example,
degree of fitness symmetry, strength of selection, and variance in
the period of fluctuation) (23).

In a recent analysis of evolution under fluctuating selection,
Xue and Leibler (26) allowed an organism to absorb informa-
tion about the distribution of possible environments by learning
the phenotypes of members of its parental lineage from previ-
ous generations. They describe this as “positive feedback that
enhances the probability that the offspring expresses the same
phenotype as the parent” (26). In this formulation, there was
“reinforcement of the parent phenotype” in an offspring, such
as might occur through epigenetic inheritance. Although their
analysis was not couched in terms of oblique and vertical trans-
mission, as defined by Cavalli-Sforza and Feldman (1), we have
been stimulated by their analysis to develop a model in which
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oblique transmission, at a rate dependent on the trait frequency
in the parental generation, occurs in addition to classical ver-
tical transmission. We then ask how fluctuations in selection
interact with the rate of oblique transmission to affect evolu-
tionary dynamics and how the rate of oblique transmission itself
might evolve.

In our formulation, both the parental phenotype and the dis-
tribution of phenotypes in the whole population contribute to an
offspring’s phenotype. Using conventional modifier theory (27),
we show that, in a symmetric cyclic selection regime with cycles
of periods 1 or 2, an allele reducing the rate of vertical trans-
mission is expected to increase in frequency when rare and in so
doing, to increase the mean fitness of the population. However,
for cycles of greater length or period asymmetry, interesting non-
monotonicities emerge both in the uninvadable rate of vertical
transmission and in the rate that maximizes the geometric time
average of the population mean fitness, which we will refer to
as the “geometric mean fitness.” We develop the models in very
large populations with cyclic selection and with random fitness
and also in the case where drift occurs via sampling from gener-
ation to generation in a finite population.

Model
Consider an infinite population whose members are character-
ized by their phenotype φ, which can be of two types, φ=A or
φ=B , with associated frequencies x and (1− x ), respectively.
We follow the evolution of x over discrete nonoverlapping gen-
erations. In each generation, individuals are subject to selection,
where the fitnesses of A and B are wA and wB , respectively.

An offspring inherits its phenotype from its parent via vertical
transmission with probability ρ and from a random individual in
the parental population via oblique transmission with probabil-
ity (1− ρ). Therefore, given that the parent phenotype is φ and
assuming uniparental inheritance (28), the conditional probabil-
ity that the phenotype φ′ of the offspring is A is

P(φ′=A|φ)=
{
(1− ρ)x + ρ if φ=A
(1− ρ)x if φ=B

, [1]

where x =P(φ=A) in the parent’s generation before selection.
Therefore, the frequency x ′ of phenotype A after one genera-

tion is given by the recursion equation

x ′= ρ
wA

w
x +(1− ρ)x

=
wA

w
x
[
(1− ρ)x + ρ

]
+

wB

w
(1− x )

[
(1− ρ)x

]
,

[2]

where w is the mean fitness, namely

w =wAx +wB (1− x ). [3]

Eq. 2 can be rewritten as

x ′= x
[
1+ ρ(1− x )

wA−wB

w

]
= x · x (1− ρ)(wA−wB )+ ρwA +(1− ρ)wB

x (wA−wB )+wB
.

[4]

In what follows, we explore the evolution of the recursion Eq.
4, namely the equilibria and their stability properties, in the cases
of constant environments and changing environments.

Constant Environment. When the environment is constant, the fit-
ness parameters wA and wB do not change between generations,
and we have the following result.

Result 1. If 0<ρ≤ 1 and both wA and wB are positive with
wA 6=wB , then fixation in the phenotype A (B) is globally stable
when wA>wB (wA<wB ).

Proof: If we rewrite Eq. 4 as x ′= x · f (x ), it can be seen that
f (1)= 1, and for ρ> 0 and 0< x < 1,

f (x )> 1 when wA>wB ,
f (x )< 1 when wA<wB .

[5]

Hence, as wA> 0 and wB > 0, both fixations in A or in B (x∗=1
for fixation in A and x∗=0 for fixation in B) are equilibrium
points of Eq. 4. Moreover, if xt is the value of x at the tth gen-
eration (t =0, 1, 2, . . . ), from Eqs. 4 and 5, we have, for any
0< x0< 1 and all t =0, 1, 2, . . .,

xt+1> xt when wA>wB ,
xt+1< xt when wA<wB ,

[6]

and since x∗=1 or x∗=0 is the only equilibrium point, we have

limt→∞xt =1, for all 0< x0≤ 1, when wA>wB ,
limt→∞xt =0, for all 0≤ x0< 1, when wA<wB .

[7]

Therefore, fixation of the favored phenotype is globally stable.

Periodically Changing Environment. Suppose the environment
changes periodically, such that the favored phenotype changes
after a fixed number of generations. Simple examples are
A1B1=ABABAB . . . , in which the favored phenotype switches
every generation, or A2B1=AABAABAAB . . . , where every
two generations, in which selection favors A, are followed by a
single generation, in which selection favors B . In general, AkBl
denotes a selection regime, in which the period is of (k + l) gen-
erations, with k generations favoring phenotype A followed by l
generations favoring B .

Let W be the fitness of the favored phenotype and w be that
of the other phenotype, where 0<w <W . Rewrite Eq. 4 as
x ′=FA(x )= xfA(x ) when A is favored and x ′=FB (x )= xfB (x )
when B is favored. Then,

fA(x )=
x (1− ρ)(W −w)+ ρW +(1− ρ)w

x (W −w)+w

=1+ ρ(1− x )
W −w

Wx +w(1− x )
,

fB (x )=
x (1− ρ)(w −W )+ ρw +(1− ρ)W

x (w −W )+W

=1+ ρ(1− x )
w −W

wx +W (1− x )
.

[8]

If xt denotes the frequency of the phenotype A at generation t
starting with x0 initially, then as we are interested in the values
of xt for t =n(k + l) with n =0, 1, . . . at the end of complete
periods, we can write

x(n+1)(k+l) =F (xn(k+l)), n =0, 1, 2, . . ., [9]

where F is the composed function

F =FB ◦FB ◦ · · · ◦FB︸ ︷︷ ︸
l times

◦FA ◦FA ◦ · · · ◦FA︸ ︷︷ ︸
k times

. [10]

Clearly, since FA(0)=FB (0)= 0 and FA(1)=FB (1)= 1, both
fixations in A or in B are equilibrium points. An interesting ques-
tion is when these fixations are locally stable. We concentrate on
x∗=0, the fixation of the phenotype B . As x ′=FA(x )= xfA(x )
for k generations and x ′=FB (x )= xfB (x ) for l generations, the
linear approximation of F (x ) “near” x =0 is

F (x )'
[
fA(0)

]k[
fB (0)

]l
x . [11]
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Hence, the local stability of x∗=0 is determined by the prod-
uct
[
fA(0)

]k[
fB (0)

]l ; x∗=0 is locally stable if this product is less
than one and unstable if it is larger than one.
From Eq. 8, we have

fA(0)= 1+ ρ
W −w

w
, fB (0)= 1+ ρ

w −W

W
. [12]

We start with the case k = l .

Result 2. If k = l and 0<w <W with 0<ρ< 1, fixation of B is
unstable.

Proof: The local stability of x∗=0, the fixation of B , is deter-
mined by the product

[
fA(0)

]k[
fB (0)

]k
=

[(
1+ ρ

W −w

w

)(
1+ ρ

w −W

W

)]k
. [13]

Observe that(
1+ ρ

W −w

w

)(
1+ ρ

w −W

W

)
=1+ ρ(1− ρ) (W −w)2

wW
> 1.

[14]

Since 0<ρ< 1 and 0<w <W , fixation on B is unstable.

Conclusions.

i) Since k = l and the above result also holds when 0<W <w ,
there is total symmetry between the two fixations in A and B ,
and fixation in A is also unstable. Thus, neither phenotype can
be lost, and there is a protected polymorphism (29).

ii) For general k , l , the condition for local stability of fixation in
A is [

fA(0)
]l[

fB (0)
]k
< 1, [15]

and that of B is [
fA(0)

]k[
fB (0)

]l
< 1. [16]

Therefore, following Result 2,

[
fA(0)

]k+l[
fB (0)

]k+l
> 1, [17]

and it is impossible that both fixations are stable. Furthermore,
since by Eq. 12, fA(0)> 1 and 0< fB (0)< 1 when 0<w <W ,
by choosing k and l appropriately, fixation on A or fixation on
B (but not both) can be stable. In addition, we can have both
fixations unstable giving the following result.

Result 3. With 0<ρ< 1 and 0<w <W in the case of AkBl peri-
odically changing environments, both fixations may be unstable,
producing a protected polymorphism.

Proof: Let a =1+ ρW−w
w

and b=1+ ρw−W
W

, and our as-
sumption entails a > 1 and 0< b< 1. Following Eq. 11, fixation
in B is unstable if akb l > 1, and similarly, fixation in A is unstable
if a lbk > 1. Therefore, both fixations are unstable if

akb l > 1 and a lbk > 1 [18]

or equivalently, if

k log a + l log b> 0 and l log a + k log b> 0. [19]

Now the inequalities of Eq. 19 hold if and only if

k
log(1/b)

log a
< l < k

log a

log(1/b)
. [20]

These inequalities are consistent if and only if log(1/b)< log a
(i.e., ab> 1), which is true by Eq. 14.

The linear approximation of F (x ) near x∗=0 (Eq. 11) does
not depend on the order in which phenotypes A and B are
favored within a cycle of k + l generations. Therefore, the local
stability properties of the two fixations depend only on the fact
that, in a cycle of (k + l) generations,A is favored k times and
B is favored l times and not their order in the cycle. When nei-
ther fixation in A nor that in B are stable, there is a protected
polymorphism, and we expect to have one or more polymorphic
equilibria. Fig. S1 illustrates the relationship between k , l and ρ
that gives polymorphism of A and B , or fixation, for different
values of s =W −w .

For the simple case of A1B1 periodically changing environ-
ment, we have the following.

Result 4. In the case A1B1 with 0<ρ< 1 and 0<w <W ,
the two fixations are unstable, and there exists a unique stable
polymorphism.

Proof: Let x be the initial frequency of A and x ′ be its
frequency after one cycle of A1B1 selection. Then, x ′=
FB

(
FA(x )

)
, where, by Eq. 8,

FA(x )= x
x (1− ρ)(W −w)+ ρW +(1− ρ)w

x (W −w)+w
,

FB (y)= y
y(1− ρ)(w −W )+ ρw +(1− ρ)W

y(w −W )+W
.

[21]

The equilibrium equation is x =FB

(
FA(x )

)
, which reduces to

a fourth degree polynomial equation in x . Since the fixations in
B and A are equilibria corresponding to the solutions x =0 and
x =1, the other equilibria correspond to solutions of a quadratic
equation Q(x )=α2x

2 +α1x +α0 =0, with α2 =1 and

α1 =
W +w

(2− ρ)(W −w)
− 1, α0 =

−w
(2− ρ)(W −w)

. [22]

As 0<ρ< 1 and 0<w <W , we have

Q(0)=
−w

(2− ρ)(W −w)
< 0

and Q(1)=
W

(2− ρ)(W −w)
> 0.

[23]

Also, as α2 =1 and α0< 0, the quadratic equation Q(x )= 0
has two real roots, one negative and one positive x∗, satisfying
0< x∗< 1. The latter determines a unique polymorphism. Let
H (x )=FB

(
FA(x )

)
. Then,

H (0)= 0, H (x∗)= x∗, H (1)= 1. [24]

Also,

F
′
A(x)=

x2(1− ρ)(W −w)2 +2xw(1− ρ)(W −w)+w [ρW +(1− ρ)w ]

[x(W −w)+w ]2

[25]

and

F
′
B (x)

=
x2(1− ρ)(w −W )2 +2xW (1− ρ)(w −W )+W [ρw +(1− ρ)W ]

[x(w −W )+W ]2
.

[26]
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From our assumptions on ρ, w , and W , we have F ′A(x )> 0 for
0≤ x ≤ 1. Observe that the numerator of F ′B (x ) is linear in ρ; its
value when ρ=1 is wW > 0, and when ρ=0, it is

x2(w −W )2 +2xW (w −W )+W 2 = [x (w −W )+W ]2> 0.

[27]

Hence, F ′B (x )> 0 for all 0≤ x ≤ 1, and H ′(x )=F ′B
(
FA(x )

)
F ′A(x ) is positive when 0≤ x ≤ 1. Thus, H (x ) is monotone
increasing for 0≤ x ≤ 1; H (x )> x is monotone increasing for
0< x < x∗, and H (x )< x is monotone increasing for x∗< x < 1.
Starting from any initial value 0< x0< 1, we have xt→ x∗ as
t→∞. Fig. S2 A, C, and E illustrates how the frequency of A
changes over time in the A1B1 regime of cycling selection.

For more general cyclic fitness regimes, the polynomial that
gives the equilibria is of higher order, and it is conceivable that
more than one stable polymorphism could exist for given values
of ρ, W , and w . We have been able to show that, when neither
fixation in A nor fixation in B are stable, in the AkBk case, this
cannot occur. In fact, we have the following.

Result 5. In the AkBk selection regimes, if the fixations in A and B
are locally unstable, a single stable polymorphic equilibrium exists.

The proof of Result 5 is in SI Text. Fig. S3A shows the sta-
ble equilibrium frequencies x∗ as a function of ρ, W , and w
in the A1B1 regime. For AkBk selection regimes from k =1
to k =40, Fig. S4 illustrates the convergence to a single stable
polymorphism.

We have not been able to prove that, for selection regimes
AkBl with l 6= k , there is a single stable polymorphic equilib-
rium when the two fixations are unstable. However, the numeri-
cal examples in Fig. S1 for AkBl and in Fig. 1 and Fig. S5 for the
special case A1B2 all exhibit a single stable polymorphic equi-
librium when fixations in A and B are unstable. These numerical
results suggest that, for W >w > 0 and 0<ρ< 1, the high-order
equilibrium polynomial has only a single root corresponding to a
globally stable polymorphism. Fig. S6 shows that this is the case
for the A3B10 regime.

Randomly Changing Environment. We now consider the case
where the environment changes according to a stochastic pro-
cess. Without loss of generality, assume that the fitness param-
eters at generation t (t =0, 1, 2, . . . ) are 1+ st for phenotype
A and 1 for phenotype B , where the random variables st for
t =0, 1, 2, . . . are independent and identically distributed. Also
assume that there are positive constants C and D , such that
P(−1+C < st <D)= 1.

Corresponding to Eq. 4, with wA =1+ st and wB =1, the
recursion equation is

xt+1 = xt
1+ ρst + xt(1− ρ)st

1+ xtst
t =0, 1, 2, . . .. [28]

As {xt} for t =0, 1, 2, . . . is a sequence of random variables, the
notion of stability of the two fixation states needs clarification.
Following Karlin and Lieberman (30) and Karlin and Liberman
(31), we make the following definition.

Definition: “Stochastic local stability” is defined as follows. A
constant equilibrium state x∗ is said to be stochastically locally
stable if, for any ε> 0, there exists a δ > 0, such that |x0− x∗|<δ
implies

P
(
lim
t→∞

xt = x∗
)
≥ 1− ε. [29]

Thus, x∗ is stochastically locally stable if for any initial x0 suffi-
ciently near x∗ the process xt converges to x∗ with high proba-
bility.

A

B

Fig. 1. Stable frequency of phenotype A and geometric mean fitness in
selection regime A1B2 as a function of the vertical transmission rate ρ and
the fitness of the disfavored phenotype w. (A) Stable frequency of phe-
notype A at the end of each three-generation cycle. (B) Geometric aver-
age of the stable population mean fitness over the three-generation cycle:
(w* ·w** ·w***)1/3. Gray contour lines join ρ and w combinations that
result in the same stable value. In all cases, W = 1.

In our case, there are two constant equilibria x∗=0 and x∗=1
corresponding to fixation in B and A, respectively. We can char-
acterize the stochastic local stability of these fixations with the
following results, and proofs are in SI Text.

Result 6. Suppose E [log(1+ ρst)]> 0. Then, x∗=0, the fixa-
tion of phenotype B , is not stochastically locally stable. In fact,
P(limt→∞xt =0)=0.

Result 7. Suppose E [log(1+ ρst)]< 0. Then, x∗=0, the fixation
of phenotype B , is stochastically locally stable. In particular, if
E(st)≤ 0, x∗=0 is stochastically locally stable.

Using the general notation for the fitness parameters wA and
wB , the stochastic local stability of fixation in B is determined
by the sign of E

[
log
(
1− ρ+ ρwA

wB

)]
, and that of fixation in A is

determined by the sign of E
[
log
(
1− ρ+ ρwB

wA

)]
. For example,

if the sign of the first is negative, fixation in B is stochastically
locally stable, and when it is positive, with probability of one,
convergence to fixation in B does not occur. It is also true that, if
E(wA/wB )≤ 1, then fixation of B is stochastically locally stable.
Following Eq. 14, for all realizations of wA and wB ,

log

(
1− ρ+ ρ

wA

wB

)
+ log

(
1− ρ+ ρ

wB

wA

)
> 0. [30]
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Fig. 2. Stochastic local stability. The figure shows the frequency of phe-
notype A after 106 generations in a very large population evolving in a
stochastic environment (Eq. 28). The fitnesses of phenotypes A and B are
wA = 1 + st and wB = 1, respectively, where st is s with probability p and
−s with probability 1− p. The gray lines mark combinations of p and s
for which E[log(1− ρ+ ρ

wA
wB

)] = 0 and E[log(1− ρ+ ρ
wB
wA

)] = 0. According

to Result 6, between these lines, fixation of either phenotype is not stochas-
tically locally stable, and we expect a stationary polymorphism between the
lines. Here, initial frequency of A is x0 = 1/10, 000, and the vertical transmis-
sion rate is ρ= 0.1.

Therefore, as in the case of periodically changing environments
AkBl , it is impossible that both fixations are simultaneously
stochastically locally stable. It is possible, however, that neither
fixation is stochastically locally stable, in which case, we expect
the population to converge to a polymorphic distribution. Fig.
2 illustrates how the properties of st in Eq. 28 affect the fre-
quency of phenotype A and in particular, the stochastic local
stability of fixation in phenotype B . Fig. 3 shows the dynamics
of the frequency of A in a case where wA and wB are identi-
cally distributed and independent; in this case, the expectation
of the stationary distribution is 1

2
, and its variance increases as ρ

increases.

Evolutionary Stability of Oblique Transmission
An interesting question concerns the evolution of oblique trans-
mission itself. For example, is there an evolutionarily stable rate
of oblique transmission? To answer this question, we use a mod-
ifier model, in which we suppose that the vertical transmission
rate is controlled by a genetic locus with two possible alleles
m and M . Let the vertical transmission rates determined by m
and M be ρ and P , respectively. Thus, there are four pheno-
genotypes: mA, mB , MA, and MB , with frequencies that, at a
given generation, are denoted by x1, x2, x3, and x4, respectively.
As the fitnesses are determined by the two phenotypes A and B
and the modifier locus is selectively neutral, we have the follow-
ing table:

pheno-genotype mA mB MA MB
frequency x1 x2 x3 x4

fitness wA wB wA wB

vertical transmission rate ρ ρ P P

. [31]

Following the rationale leading to Eq. 2, the next generation
pheno-genotype frequencies x ′1, x ′2, x ′3, and x ′4 are

wx ′1 =wAx1
[
(1− ρ)(x1 + x3)+ ρ

]
+wBx2(1− ρ)(x1 + x3)

wx ′2 =wAx1(1− ρ)(x2 + x4)+wBx2
[
(1− ρ)(x2 + x4)+ ρ

]
wx ′3 =wAx3

[
(1−P)(x1 + x3)+P

]
+wBx4(1−P)(x1 + x3)

wx ′4 =wAx3(1−P)(x2 + x4)+wBx4
[
(1−P)(x2 + x4)+P

]
,

[32]

with w , the mean fitness, given by

w =wA(x1 + x3)+wB (x2 + x4). [33]

Note that, under these assumptions, the M /m locus and the
A/B phenotypic dichotomy do not undergo anything analogous
to recombination, which might be introduced if A/B phenotypes
were viewed as haploid genetic variants.

Starting with a stable equilibrium, where only the m allele
is present, we check its external stability (27, 32) to invasion
by allele M . A constant environment always leads to fixation
of the favored type, independent of ρ. We, therefore, assume
changing environments and in particular, the simple case of the
A1B1 cycling environment, where a unique stable polymorphism
exists and depends on ρ (SI Text has a computational analysis of
the general AkBl case). Specifically, from Eq. 32 with wA =W ,
wB =w in the first generation and wA =w , wB =W in the sec-
ond generation, after two generations, we have

x ′′=T2(T1x ), [34]

where the nonlinear transformation x ′=T1x is given by Eq. 32
with wA =W , wB =w and the nonlinear transformation x ′′=
T2x

′ is given by Eq. 32 with wA =w , wB =W . Here, x , x ′, and
x ′′ are the frequency vectors.

For the A1B1 case, when only the m allele is present with
associated rate ρ, 0<ρ< 1, and 0<w <W , a unique stable
equilibrium x∗=(x∗1 , 1− x∗1 , 0, 0) exists. x∗1 is the only posi-
tive root of the quadratic equation Q(x )=α2x

2 +α1x +α0 =0,
with α2,α1,α0 specified in Eq. 22. Solving Q(x )= 0 gives

x∗1 =
1

2
−

W +w −
√

(1− ρ)2(W −w)2 +4Ww

2 · (2− ρ)(W −w)
, [35]

and it can be seen that
√
Ww −w

W −w
< x∗1 <

1

2
. [36]

Fig. 3. Effect of vertical transmission rate ρ on phenotype polymorphism
in a randomly changing environment. Dynamics of the frequency of phe-
notype A over time starting at x0 = 10−5 when the fitnesses of phenotypes
A and B are identically and independently distributed random variables. As
the vertical transmission rate ρ increases from 0.001 to 0.5, the frequency
reaches a polymorphic distribution with E(xt)→ 0.5 faster, but the variance
also increases. The fitnesses of phenotypes A and B, wA and wB, respectively,
are both exponential random variables with expected values of two.
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A B C

Fig. 4. Consecutive fixation of modifiers that reduce the vertical transmission rate in selection regime A1B1. The figure shows results of numerical simula-
tions of evolution with two modifier alleles (Eq. 32). When a modifier allele fixes (frequency > 99.9%), a new modifier allele is introduced with a vertical
transmission rate one order of magnitude lower (vertical dashed lines). (A) The frequency of phenotype A in the population over time. (B) The frequency of
the invading modifier allele over time. (C) The population geometric mean fitness over time; Inset zooms in to show that the mean fitness increases slightly
with each invasion. Invading alleles are introduced at frequency 0.01%; whenever their frequency drops below 0.01%, they are reintroduced. Parameters:
vertical transmission rate of the initial resident modifier allele, ρ0 = 0.1; fitness values: W = 1 and w = 0.5. The x axis is on a log scale, as each sequential
invasion takes an order of magnitude longer to complete. Fig. S12 shows w = 0.1 and 0.9.

The external stability of x∗ to the introduction of the modifier
allele M with rate P is determined by the linear approximation
matrix L. We prove the following result in SI Text.

Result 8. L has two positive eigenvalues, and

i) when P >ρ, the two eigenvalues are less than one;
ii) when P <ρ, the largest eigenvalue is larger than one; and

iii) when P = ρ, the largest eigenvalue is one.

We conclude that, in the A1B1 selection regime, an allele
m producing vertical transmission rate ρ is stable to the intro-
duction of a modifier allele M with associated rate P if P >ρ,
and it is unstable if P <ρ. Thus, in this case, evolution tends
to reduce vertical transmission and hence, increase the rate of
oblique transmission, and there is a reduction principle for the
rate of vertical transmission (27, 32). The evolutionary dynamics
of the reduction in ρ under the A1B1 cycling regime are shown in
Fig. 4, which also illustrates the change in phenotype frequencies
over time.

In the case of identically distributed random fitnesses wA

and wB , Fig. 5 shows an example of the success of modi-
fiers that reduce ρ. We have not, however, been able to prove
that there is a reduction principle for this class of fluctuating
fitnesses.

Values of the evolutionarily stable vertical transmission rate,
ρ∗, for some AkBl examples (SI Text and Fig. S10 have analyt-
ical details) are recorded in Table 1 for different values of w
relative to W =1. Interestingly, with w =0.1, the evolutionar-
ily stable value of ρ is zero for the A1B2 regime but not for
the A3B10 and A5B30 regimes, in which the only stable val-
ues are those that lead to fixation of phenotype B (e.g., ρ>
0.4625 and ρ> 0.1489, respectively); these are, therefore, neu-
trally stable (Fig. S10). AkBk results are plotted in Fig. 6B. In the
A2B2 regime, ρ∗=0, and there is reduction of vertical transmis-
sion for all selection values tested. However, for AkBk regimes
with k > 2, we find ρ∗ 6=0, and depending on w , ρ∗ can be as
high as 0.95. In Table 1, blank values for ρ∗ indicate that our
method was numerically unstable and that a precise value for
ρ∗ could not be obtained. This is why, in Fig. 6B, no ρ∗ points
are shown for AkBk with k > 19. In Table 1, the word “fixa-
tion” indicates that fixation of B occurs, at which point there
can be no effect of modification of ρ; ρ∗ cannot be calculated in
such cases.

Geometric Mean Fitness and Rate of Vertical Transmission
Under fluctuating selection, the geometric mean fitness of geno-
types has been shown to determine their evolutionary dynamics
(8, 30, 33). For the evolution of mutation rates that are controlled
by genetic modifiers, the stable mutation rate and the mutation
rate that maximizes the geometric mean fitness of the population
seem to be the same when the period of environmental fluctu-
ation is low enough (24). We can ask the same question here:
is the stable rate ρ∗ the same as the rate ρ̂ that maximizes the

A

B

Fig. 5. Consecutive fixation of modifiers that reduce the vertical transmis-
sion rate ρ under symmetric randomly changing selection. The figure shows
results of numerical simulations of evolution with two modifier alleles (Eq.
32). When a modifier allele fixes (frequency> 99.9%), a new modifier allele
is introduced with a vertical transmission rate one order of magnitude lower
(vertical dashed lines). (A) The frequency of phenotype A in the population
over time. (B) The frequency of the invading modifier allele over time. Invad-
ing alleles are introduced at frequency 0.01%; whenever their frequency
drops below 0.01%, they are reintroduced. Parameters: vertical transmis-
sion rate of the initial resident modifier allele is ρ0 = 0.1, and the ratio of
fitness values is wA/wB = 10 with probability 0.5 and wA/wB = 0.1 also with
probability 0.5. The x axis is on a log scale, as each sequential invasion takes
an order of magnitude longer to complete.
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Table 1. Values of ρ* (stable ρ) and ρ̂ (optimal ρ)

k l {w}† ρ* ρ̂

1 1 0.1 0.000000 0.000000
1 1 0.5 0.000000 0.000000
1 1 0.9 0.000000 0.000000
1 2 0.1 0.000000 0.00065
1 2 0.5 Fixation Fixation
1 2 0.9 Fixation Fixation
2 2 0.1 0.000000 0.000000
2 2 0.5 0.000000 0.000000
2 2 0.9 0.000000 0.000000
3 10 0.1 >0.4265 0.00031
3 10 0.5 Fixation Fixation
3 10 0.9 Fixation Fixation
5 30 0.1 >0.1489 0.00027
5 30 0.5 Fixation Fixation
5 30 0.9 Fixation Fixation

12 12 0.1 0.84924 0.24347
12 12 0.5 0.91209 0.000000
12 12 0.9 0.95686 0.000000
20 20 0.1 0.223925
20 20 0.5 0.94643 0.000000
20 20 0.9 0.98304 0.000000
30 30 0.1 0.193280
30 30 0.5 0.96331 0.000000
30 30 0.9 0.99136 0.000000
50 50 0.1 0.15419
50 50 0.5 0.9768 0.22107
50 50 0.9 0.99581 0.000000

ρ* is the uninvadable value of the vertical transmission rate. ρ̂ is the rate
that maximizes the geometric mean fitness at the stable equilibrium of the
AkBl cycle.
†Note that W = 1.

equilibrium value of the geometric mean fitness under fluctuat-
ing selection? For the A1B1 selection regime, we have the fol-
lowing result.

Result 9. If W >w and 0≤ ρ≤ 1, then the mean fitness at the sta-
ble equilibrium in the A1B1 environment is a decreasing function
of ρ.

Proof: In A1B1, the stable frequency of phenotype A is, by
Eq. 35,

x∗=
1

2
− W +w −Z

2(2− ρ)(W −w)
, [37]

where Z =
√

(1− ρ)2(W −w)2 +4Ww > 0. The geometric
mean fitness at the stable equilibrium is w∗ ·w∗∗, where w∗∗ is
the mean fitness at the middle of the A1B1 cycle; in this case
w∗=w∗∗ due to the symmetry between the two phenotypes A
andB , which allows us to reduce the problem to properties ofw∗.
Now, because W >w , w∗ is an increasing linear function of x∗:

w∗= x∗W +(1− x∗)w = x∗(W −w)+w . [38]

Thus, w∗ is decreasing in ρ if dx∗/dρ is negative. Using Eq. 37,

dx∗

dρ
=− (1− ρ)(W −w)

2(2− ρ)Z − W +w −Z

2(2− ρ)(W −w)

=
x∗− 1

2

2− ρ −
(1− ρ)(W −w)

2(2− ρ)Z .

[39]

From Eq. 36, 0< x∗≤ 1
2

, and therefore, dx∗/dρ< 0, which com-
pletes the proof.

Fig. 4 illustrates the increase over time of the geometric mean
fitness with decreasing ρ at a polymorphic equilibrium in the
A1B1 regime. The values of ρ̂ and ρ∗ are the same in A1B1
and A2B2 regimes, namely both are zero. Fig. 1B shows the geo-
metric mean fitness in the A1B2 regime, and we see that, for
small values of w , this mean fitness increases as ρ decreases.
At w =0.1, Table 1 shows that ρ̂ and ρ∗ are roughly zero. In
all AkBk regimes that we tested with w =0.9, the value of ρ̂
was also zero, substantially different from the values of ρ∗, as
shown in Fig. 6. Also in Fig. 6A, we see that, with w =0.1, ρ̂
changes from zero to positive in the AkBk regimes with k ≥ 12,
while with w =0.5, the change occurs at k =31. In Fig. 6, with
w =0.1, ρ̂ is between 0.15 and 0.24 for 12≤ k ≤ 50, while with
w =0.5, ρ̂ exceeds 0.2 for 31≤ k ≤ 50. More details on the mis-
match between ρ∗, which cannot be invaded, and ρ̂, which maxi-
mizes geometric mean fitness, are given in Table 1, Figs. S7 and
S8, and SI Text.

Finite Population Size
To include the effect of random drift due to finite population
size in the above deterministic model, we use the Wright–Fisher
model. Let Xt denote the number of individuals with phenotype
A in a population of fixed size N at the tth generation, and sup-
pose that Xt =Nx . Also, let x ′ represent the frequency of the
phenotype A in the infinite population model in the next gener-
ation, namely (Eq. 2)

A

B

Fig. 6. Fitness “optimal” and evolutionary stable vertical transmission rate
in AkBk selection regime. (A) The vertical transmission rate ρ̂ that maxi-
mized the geometric average of the population mean fitness is zero (com-
plete oblique transmission) when selection cycles quickly between favor-
ing phenotype A and B and then abruptly transitions to ≈ 0.2 followed
by a slow decrease (Figs. S5 and S6 have details on the abrupt tran-
sition). (B) The evolutionary stable rate ρ*, which cannot be invaded
by modifiers with either higher or lower vertical transmission rate P,
rapidly increases from zero when selection cycles are short (k = 1 or 2)
to roughly one when selection cycles are longer. The dashed line shows
1− 1

k−1 , which fits the values for w = 0.5 (41). The values for w = 0.1
(blue) could not be calculated for k> 19 due to numerical instability
when selection is strong and the duration between selection fluctuations
is long. In all cases, W = 1. SI Text has details on how we calculated the
stable rate.

Ram et al. PNAS Early Edition | 7 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719171115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719171115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719171115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719171115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719171115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719171115/-/DCSupplemental


x ′= ρ
wA

w
x +(1− ρ)x . [40]

Then, according to the Wright–Fisher model (34), Xt+1, the
number of individuals of phenotype A at generation (t +1), is
determined by the probability

P
(
Xt+1 = j |Xt =Nx

)
=

(
N
j

)(
x ′
)j (

1− x ′
)N−j [41]

for j =0, 1, 2, . . .,N . Thus, the fluctuations in the numbers of
phenotypes A and B in the population of size N are generated
by the Wright–Fisher Markov chain, where, given that Xt =Nx ,
Xt+1 has a binomial distribution with parameters (N , x ′).

This Markov chain has two absorbing states, Xt =N and Xt =
0, corresponding to the two fixations in A and B , respectively,
and we are interested in the fixation probabilities and the time
to fixation of these two absorbing states as functions of the initial
frequency x and also of ρ, wA, and wB . To these ends, we use a
diffusion approximation to the process {Xt}, which allows us to
compute u(x ), the probability that phenotype A goes to fixation
when its initial frequency is x , namely

u(x )=
1− e−2ρsx

1− e−2ρs
. [42]

The expected time to fixation in A starting from an initial fre-
quency of x is given by

T (x )=
1− u(x )

ρs

∫ x

0

e2ρsξ − 1

ξ(1− ξ) dξ+
u(x )

ρs

∫ 1

x

1− e−2ρs(1−ξ)

ξ(1− ξ) dξ,

[43]

where u(x ) is given in Eq. 42, and in generations, T (x ) is mul-
tiplied by N (the derivation is in SI Text). Unfortunately, the
integrals in Eq. 43 cannot be done in closed form unless ρs =0,
in which case u(x )= x and T (x )=−2x ln x − 2(1− x ) ln(1− x )
(ref. 34, p. 160), and only numerical computation of T (x ) is pos-
sible for specified values of x , ρ, and s .

For the fixation probability u(x ), we have the following result.

Result 10. When s > 0, so that the phenotype A is favored, the fixa-
tion probability u(x ) is monotone increasing in ρ.

The proof of Result 10 is in SI Text. Fig. S9 compares the fix-
ation probability and time to fixation derived numerically from
simulating the Wright–Fisher Markov chain with the diffusion-
derived values of u(x ) and T (x ). The fit is seen to be very good.
Note that, when N is large, the Wright–Fisher model exhibits
persistent fluctuation around the deterministic expectation, as
shown by the orange traces in Fig. S2.

We can also develop a diffusion approximation for the case of
a cycling environment. Suppose that selection changes in cycles
of length n , such that, within the cycle, the fitness parameters are
w t

A, w t
B for t =1, 2, . . .,n . Also, let

1

N
st 'w t

A−w t
B , St =

t∑
i=1

si , t =1, 2, . . .,n. [44]

Following Karlin and Levikson (35), we have the following result.

Result 11. The mean µ(x ) and variance σ2(x ) of the change in the
frequency of A in one generation for the diffusion approximation in
the case of a cycling environment AkBl , where k + l =n , are

µ(x )= ρSnx (1− x )

σ2(x )=nx (1− x ).
[45]

The proof of Result 11, based on induction on n , is given in SI Text.
Using the moments in Eq. 45, the fixation probability u(x ) and

the expected time T (x ) to fixation from an initial frequency of x
can be computed, where s is replaced by sn/n . We find

u(x )=
1− e−2ρ Sn

n
x

1− e−2ρ Sn
n

, [46]

and T (x ) can be computed similarly.
In the case of the AkBl cycling environment, we write n = k +

l , and if wA =W , wB =w for k generations and wA =w , wB =
W for l generations, we have

Sn =Sk+l =N (k − l)(W −w). [47]

Fig. 7 shows an example of how (k − l), ρ, and (W −w) in Eq. 46
for u(x ) interact to affect fixation probabilities. More examples
are illustrated in Fig. S11.

Discussion
Nonchromosomal modes of phenotypic transmission are receiv-
ing increasing attention (36–38), especially with respect to their
potential role in adaptation and maintenance of diversity (39).
Here, we have focused on a dichotomous phenotype transmit-
ted through a combination of parental and nonparental trans-
mission. In addition to the roles that these transmission modes
play in the dynamics of phenotypic diversity in large and small
populations, we have also investigated a genetic model for the
evolution of the transmission mode itself.

Our model differs markedly from that of Xue and Leibler (26),
who took the individual phenotypic distribution (i.e., the proba-
bility that an individual develops one of a set of phenotypes) to
be the inherited trait. In our model, the transmitted trait is the
phenotype itself. Thus, with two phenotypic states A and B , we
track the frequency x of A, whereas Xue and Leibler (26) focus
on the dynamics of the per-individual probability πA of learning
the phenotype A. One interpretation of our model is as a mean

Fig. 7. Fixation in a finite population with different ratios of selection
periods k

l . Fixation probability of phenotype A when starting with a sin-

gle copy in a population of size N: u(1/N) = (1− exp(−2ρ k−l
k+l (W −w))/(1−

exp(−2Nρ k−l
k+l (W −w)) (Eqs. 46 and 47). k and l are the numbers of gener-

ations in which phenotypes A and B, respectively, are favored by selection.
Here, fitness of the favored phenotype is W = 1, fitness of the disfavored
phenotype is w = 0.5, and the population size is N = 10, 000. Fig. S11 shows
additional examples.
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value approximation to the model of Xue and Leibler (26), where
x , the state in our model, is the average of the population distri-
bution of individual phenotype probabilities.

In a constant environment, the higher the vertical transmission
rate ρ, the faster the approach to fixation of the favored pheno-
type: A if wA>wB or B if wB >wA. Here, 1− ρ, the oblique
transmission rate, represents the added chance that an offspring
becomes A by learning from the parent’s population after learn-
ing from the parents who have undergone selection (Eq. 2). This
simple phenotypic model does not allow a polymorphism to be
achieved in a constant environment, but with more oblique trans-
mission, approach to fixation is retarded.

With fluctuating environments, the dynamics of the phenotype
frequencies are, in general, much more complicated. In particu-
lar, with deterministically cycling symmetric fitness values (the
AkBl model), it is impossible for fixation in A and B to both
be stable. If k = l , for example, neither fixation is stable, and
there is a single stable polymorphic equilibrium (with pheno-
types A and B present) (Result 5). In the A1B1 case, this poly-
morphism is globally stable. In the AkBl case, bounds on l/k
that determine the instability of both fixations and hence, the
protection of polymorphism are given by the inequalities of Eq.
20, which depend on both the fitness differences and the rate
ρ of vertical transmission. We conjecture that, with k 6= l , there
is a unique stable polymorphism if both fixations are unstable.
This result is similar to the storage effect (40), in which pro-
tection from selection maintains species coexistence: consider
two species, A and B , with overlapping generations, an equal
death rate ρ, and different growth rates wA and wB ; then, Eq.
2 describes the change in frequency of species A. In our model,
oblique transmission can be said to protect the disfavored phe-
notype from selection, because it allows transmission without
reproduction.

In deterministic one-locus, two-allele diploid population ge-
netic models with cycling fitness regimes, Haldane and Jayakar
(33) first showed the relevance of the geometric mean of geno-
typic fitness (compare Eqs. 16 and 17) for the maintenance (or
loss) of polymorphism. However, with equal homozygote fit-
ness, alternating in strength as a two-generation cycle (compare
with A1B1), Karlin and Liberman (31) extended the results of
Haldane and Jayakar (33) and found conditions under which
both allelic fixations and polymorphic equilibrium could all be
stable, with the evolution depending on initial allele frequencies
as well as the homozygote fitness differences between alternate
generations. Our haploid model does not seem to produce such
dependence on the initial conditions.

When the fitnesses wA and wB are treated as random vari-
ables rather than varying cyclically, stochastic local stability is
the appropriate analog to local stability in the case of cyclic
fitness variation. While fixations in phenotypes A and B can-
not both be stochastically stable in this case, both may be
unstable, and a polymorphic distribution may result. The vari-
ance of this distribution is greater for larger values of ρ.
This is because the stochastic local stability conditions involve
E
{
log[1− ρ+ ρ(wA/wB )]

}
, and the effect of the variance of

(wA/wB ) will clearly increase as ρ increases. In the finite pop-
ulation case, a greater level of vertical transmission makes selec-
tion more effective, increasing the probability u(x ) of fixation
and reducing the expected time to fixation.

We have shown that, in the A1B1 case, the rate of vertical
transmission tends to decrease when it is under the control of a
genetic modifier. From numerical iteration, it seems that this is
also true in the random selection case when the fitnesses of A
and B are identically distributed and independent between gen-
erations. However, for AkBl selection regimes more complicated
than A1B1, evolution of a modifier of vertical transmission is
not straightforward. While reduction of ρ occurs in the A2B2
regime, the uninvadable value ρ∗ is not zero for all of the fitness
values explored in AkBk regimes with k > 2 (Fig. 6B and Table
1). In fact, ρ∗ increases sharply as k increases beyond k =2. This
is an unusual scenario for genetic modifiers, although it must be
noted that a modifier of ρ is not neutral; it affects primary selec-
tion, while neutral modifiers of recombination, mutation, and
migration affect induced or secondary selection.

The dependence of the modifier dynamics on the strength
of selection (that is, w when W =1) is complicated by the ap-
proach of the system to fixation. When the phenotype frequen-
cies become exceedingly small, dependence of the dynamics of
the modifier of ρ becomes extremely difficult to detect due to
numerical instability; this is especially true for larger values of k
in AkBk regimes when w is small (Fig. 6B and Table 1) (with
k ≥ 19).

Fig. 6A (Table 1) shows that the value ρ̂ that maximizes the
geometric mean fitness is the same as the evolutionarily stable
value ρ∗ in the A1B1 and A2B2 selection regimes. For AkBk
regimes with k > 2, our numerical analysis shows that ρ̂ depends
strongly on the strength of selection (i.e., the value of w rela-
tive to W =1). For AkBl regimes with w =0.1, the difference
between ρ̂ and ρ∗ is seen even with the A1B2 environment. For
AkBk regimes and w =0.9, we find ρ̂=0, while ρ∗ is close to
0.9. For larger values of k , ρ̂ is between 0.15 and 0.25, while ρ∗

remains above 0.8 and can reach 0.99 for very large k . Compar-
ing Fig. 6A with the asymptotic growth rate (AGR) of Xue and
Leibler (26), whose parameter η is the rate at which an individual
learns from its parental lineage, there is a similarity of our curves
for w =0.1 and 0.5 with their curve in the AkBk environment.
They show the AGR decreasing with η in the AkBk regime for
small k , but larger values of k entail that the AGR has a maxi-
mum for an intermediate value of η.

Although the models of Xue and Leibler (26) and that ana-
lyzed here both incorporate parental and nonparental transmis-
sion, they do so in qualitatively different ways. The model treated
in this paper is squarely in the tradition of gene–culture coevo-
lutionary theory together with modifier theory from population
genetics. The different findings from the two classes of mod-
els are interesting and suggest that additional exploration of the
overlaps and discrepancies between the two approaches would
be worthwhile.
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SI Text
Proof of Uniqueness in Result 5. Following Eq. 10, the transformation of the frequency x of phenotype A is

x ′ = F (x ) = FB ◦ · · · ◦ FB︸ ︷︷ ︸
l times

◦ FA ◦ · · · ◦ FA︸ ︷︷ ︸
k times

(x ). [S1]

Using Eqs. 25 and 26, we can write

F ′A(x ) = ρ
wW[
w(x )

]2 + (1− ρ), w(x ) = (W − w)x + w [S2]

F ′B (x ) = ρ
wW[
w̃(x )

]2 + (1− ρ), w̃(x ) = (w −W )x + W . [S3]

Since F ′A(x ) > 0, F ′B (x ) > 0 for 0 ≤ x ≤ 1, all of the functions FA, FB , FA ◦ · · · ◦ FA, FB ◦ · · · ◦ FB , and F are monotone increasing
for 0 ≤ x ≤ 1.

From Result 2, the two fixations x = 0 and x = 1 are not stable, because F ′(0) > 1 and F ′(1) > 1. Therefore,

F (x )− x > 0 for x > 0 “near” x = 0, [S4]

F (x )− x < 0 for x < 1 “near” x = 1. [S5]

Hence, as F (x )−x is a continuous function of x for 0 ≤ x ≤ 1, there exists (at least one) polymorphic equilibrium x∗ with 0 < x∗ < 1,
such that F (x∗) = x∗.

If there is more than one polymorphic equilibrium, and as there is a finite number of equilibria, let x∗ be the “closest” polymorphic
equilibrium to x = 0. Since F (x ) > x for 0 < x < x∗, F (x ) < x for x > x∗ (at least “near” x∗), and F (x ) is a monotone increasing
function in [0, 1], x∗ must be locally stable.

Let x̂ = F (x̂ ) with 0 < x̂ < 1 be any polymorphic equilibrium; then, from [S1], its evolution in the k + k generations is

A A · · · A B B · · · B A
x̂ = x̂0 → x̂1 → · · · → xk−1 → ŷ0 → ŷ1 → · · · → ŷk−1 → x̂0 = x̂ .

[S6]

Due to the symmetry between phenotypes A and B , we have

ŷt = 1− x̂t , w
(
x̂t
)

= w̃
(
ŷt
)

[S7]

for all t = 0, 1, 2, . . ., k − 1.
The polymorphic equilibrium x̂ is locally stable if F ′(x̂ ) < 1 or from [S1–S3], if

k−1∏
t=0

{
ρ

wW[
w(x̂t)

]2 + (1− ρ)

}
·
k−1∏
t=0

{
ρ

wW[
w̃(ŷt)

]2 + (1− ρ)

}
< 1. [S8]

Applying [S7], we conclude that x̂ is locally stable if

k−1∏
t=0

{
ρ

wW[
w(x̂t)

]2 + (1− ρ)

}
< 1. [S9]

As x∗, the closest polymorphic equilibrium to x = 0, is stable, then [S9] implies that

k−1∏
t=0

{
ρ

wW[
w(x∗t )

]2 + (1− ρ)

}
≤ 1, [S10]

where x∗t for t = 0, 1, . . ., k − 1 is defined as in [S6].
If x̂ is any polymorphic equilibrium other than x∗, then x̂ > x∗ or x̂0 > x∗0 by [S4]. Since FA is a monotone increasing function and

x̂t+1 = FA

(
x̂t
)
, x∗t+1 = FA

(
x∗t
)

t = 0, 1, . . ., k − 1, [S11]

then by induction, we have x̂t > x∗t for all t = 0, 1, 2, . . ., k − 1. In addition, as w(x ) = (W − w)x + w and W > w , we also have
w(x̂t) > w(x∗t ) for all t = 0, 1, 2, . . ., k − 1 and

k−1∏
t=0

{
ρ

wW[
w(x̂t)

]2 + (1− ρ)

}
<

k−1∏
t=0

{
ρ

wW[
w(x∗t )

]2 + (1− ρ)

}
≤ 1. [S12]
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Hence, x̂ is also locally stable. However, it is impossible that all polymorphic equilibria are stable unless there is only one stable
polymorphic equilibrium. Therefore, x∗ is the unique stable polymorphic equilibrium, and since F (x ) > x for 0 < x < x∗, F (x ) < x
for x∗ < x < 1, and F (x ) is monotone increasing in [0, 1], therefore, x∗ is globally stable.

Proof of Result 6. Rewrite recursion Eq. 28 as

xt + 1

xt
= (1 + ρst)

[
1− xt

ρst(1 + st)

(1 + ρst)(1 + xtst)

]
. [S13]

Then,

log xt+1 − log xt = log(1 + ρst) + log

[
1− xt

ρst(1 + st)

(1 + ρst)(1 + xtst)

]
. [S14]

Summation yields

1

t
[log xt − log x0] =

1

t

t−1∑
n=0

log(1 + ρsn) +
1

t

t−1∑
n=0

log

[
1− xn

ρsn(1 + sn)

(1 + ρsn)(1 + xnsn)

]
. [S15]

Let µ = E [log(1 + ρst)]. As {st}t≥0 are independent and identically distributed random variables, the strong law of large numbers
applies, and

lim
t→∞

1

t

t−1∑
n=0

log(1 + ρsn) = µ [S16]

almost surely.
Let ζ be such that 1

t

∑t−1
n=0 log[1 + ρsn(ζ)] = µ, and assume that limt→∞xt(ζ) = 0. As the random variables {st}t≥0 are uniformly

bounded,

xt(ζ)
ρst(ζ)[1 + st(ζ)]

[1 + ρst(ζ)][1 + xt(ζ)st(ζ)]
t →∞ 0 [S17]

and

lim
t→∞

1

t

t−1∑
n=0

log

[
1− xn(ζ)

ρxn(ζ)[1 + sn(ζ)]

[1 + ρsn(ζ)][1 + xt(ζ)sn(ζ)]

]
= 0. [S18]

Thus, [S15] implies that

lim
t→∞

1

t
[log xt(ζ)− log x0(ζ)] = µ. [S19]

If µ=E [log(1 + st)] > 0, then from [S19], we deduce that limt→∞xt(ζ) =∞, a contradiction. Therefore, when µ> 0, P(limt→∞xt =
0) = 0, and fixation of B (x∗= 0) is stochastically locally unstable.

Thus, by Result 6, for x∗ = 0 to be stochastically locally stable, it is necessary that E [log(1 + ρst)] ≤ 0. In fact, the strict inequality
is sufficient.

Fig. 3 presents a numerical example of the dynamics of recursion Eq. 28 with a specific random selection coefficient st .

Proof of Result 7. Let µ = E [log(1 + ρst)]. Then, as {st}t≥0 are independent and identically distributed random variables, the strong
law of large number applies and almost surely

lim
t→∞

1

t

t−1∑
n=0

log(1 + ρsn) = µ < 0. [S20]

Appealing to the Egoroff Theorem, for any ε > 0, there exists T , such that

P

(
1

t

t−1∑
n=0

log(1 + ρsn) <
µ

2
for all t ≥ T

)
≥ 1− ε. [S21]

As 0 ≤ ρ ≤ 1 and the {st}t≥0 are uniformly bounded, we can find a δ′ > 0, such that

xt < δ′ =⇒
∣∣∣∣log

[
1− xt

ρst(1 + st)

(1 + ρst)(1 + xtst)

]∣∣∣∣ < −µ4 . [S22]

Also, as 0 ≤ xt ≤ 1 for all t ,

xt+1 = xt
1 + ρst + xt(1− ρ)st

1 + xtst
< Kxt , [S23]

where K is independent of t . It follows that there exists a δ with 0 < δ < δ′, such that

xo < δ =⇒ xt < δ′ for all t = 0, 1, 2, . . .,T − 1. [S24]

Let ξ be a realization of the evolutionary process, such that
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1

t

t−1∑
n=0

log[1 + ρsn(ξ)] <
µ

2
for all t ≥ T , [S25]

and assume that x0 < δ. Then,

1

T
[log xT (ξ)− log x0(ξ)] =

1

T

T−1∑
n=0

log[1 + ρsn(ξ)] +
1

T

T−1∑
n=0

log[1− xn(ξ)
ρsn(ξ)[1 + sn(ξ)]

[1 + ρsn(ξ)][1 + xn(ξ)sn(ξ)]

<
µ

2
− µ

4
=
µ

4
< 0, [S26]

and therefore, xT (ξ) < x0(ξ) < δ′. Invoking induction, we get that, for t ≥ T ,

1

t
log

xt(ξ)

x0
≤ µ

4
, [S27]

or for all t ≥ T ,

xt(ξ) ≤ x0 exp
(µ

4
t
)
. [S28]

As µ < 0, this implies that xt(ξ) t → ∞ 0. Therefore, we have shown that, for given ε > 0, there is a δ > 0, such that, if 0 < x0 < δ,
then P (limt→∞xt = 0) ≥ 1− ε; therefore, x∗ = 0, and the fixation in B is stochastically locally stable. The second statement of Result
6 follows from the convexity of the log function and Jensen’s inequality.

Proof of Result 8. The external stability of x∗ (Eqs. 35 and 36) to the introduction of the modifier allele M with rate P is determined
by the linear approximation matrix L = L2 · L1 near x∗, which is derived from Eq. 32 and given by

w∗L1 =

[
W
[
(1− P)x∗1 + P

]
w(1− P)x∗1

W (1− P)x∗2 w
[
(1− P)x∗2 + P

]] [S29]

and

w∗∗L2 =

[
w
[
(1− P)x∗∗1 + P

]
W (1− P)x∗∗1

w(1− P)x∗∗2 W
[
(1− P)x∗∗2 + P

]], [S30]

where x∗∗ = T1x
∗, x∗∗1 = x∗2 = 1− x∗1 , x∗∗2 = x∗1 , and

w∗ = Wx∗1 + wx∗2 , w∗∗ = wx∗∗1 + Wx∗∗2 . [S31]

Due to the symmetry between the two phenotypes A and B in the A1B1 case, we have x∗∗1 = x∗2 and x∗∗2 = x∗1 , so that w∗∗ = w∗, and
in fact,

w∗L2 =

[
w
[
(1− P)x∗2 + P

]
W (1− P)x∗2

w(1− P)x∗1 W
[
(1− P)x∗1 + P

]]. [S32]

Note that, as x∗ = T2(T1x
∗) with x∗3 = x∗4 = 0, from [S29] and [S30] with P = ρ, we have[

x∗1
x∗2

]
= L2 · L1

[
x∗1
x∗2

]
= L

[
x∗1
x∗2

]
. [S33]

Hence, when P = ρ, one of the eigenvalues of L is one. In general, L = L2 · L1, and using [S29] and [S32], we have

(w∗)
2 L11 = Ww

[
(1− P)2x∗1 x

∗
2 + P

]
+
[
w(1− P)x∗1

]2
(w∗)

2 L12 = W (1− P)
[
P + x∗1 (1− P)

][
Wx∗2 + wx∗1

]
(w∗)

2 L21 = w(1− P)
[
1− x∗1 (1− P)

][
Wx∗2 + wx∗1

]
(w∗)

2 L22 = Ww
[
(1− P)2x∗1 x

∗
2 + P

]
+
[
W (1− P)x∗2

]2
.

[S34]

The external stability of x∗ is determined by the eigenvalues of L, namely the roots of its characteristic polynomial R(λ) = det(L−λI ),
with I the 2× 2 identity matrix. From Eq. S34, R(λ) = a2λ

2 + a1λ+ a0, where

a0 =
P2W 2w2

(w∗)4
, a1 = −2PWw + (1− P)2[Wx∗2 + wx∗1 ]2

(w∗)2
, a2 = 1. [S35]

As L is a positive matrix, by the Perron–Frobenius theorem, L has a positive eigenvalue, and as a0 > 0 and a2 = 1, the product of the
two eigenvalues of L is positive. Thus, L has two positive eigenvalues. Let R(1) = R(1;P); then, from [S35],

R(1;P) =
W 2w2 − (w∗w̃∗)2

(w∗)4
P2 + 2P

(w̃∗)2 −Ww

(w∗)2
+

(w∗)2 − (w̃∗)2

(w∗)2
, [S36]

where w̃∗ = Wx∗2 + wx∗1 .
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By Eq. 36,
(√

Ww − w
)
/(W − w) < x∗1 <

1
2

, from which it is easily seen that
√
Ww < w∗ < w̃∗. [S37]

When P = ρ, one of the eigenvalues of L is one; hence, R(1; ρ) = 0. Another root of R(1;P) = 0 is
[
(w∗)2 + w∗w̃∗

]
/
[
Ww + w∗w̃∗

]
,

which by Eq. S37, is larger than one. As R(1; 0) =
[
(w∗)2 − (w̃∗)2

]
/(w∗)2 < 0 by Eq. S37, we deduce that, when 0 < P < ρ,

R(1;P) < 0, whereas when ρ < P < 1, R(1;P) > 0. Hence, when P < ρ, R(1) < 0, and since a2 = 1, R(+∞) > 0; therefore, we
conclude that R(λ) = 0 has a positive root larger than one, and the largest positive eigenvalue of L is larger than one.

When P > ρ, we have R(1) > 0 and also, R(0) = a0 > 0. As R(λ) = 0 has two positive roots and as a2 > 0, R(λ) is convex: either
the two positive roots are less than one or both larger than one. However, the product of the two roots is P2W 2w2/(w∗)2 < 1 by Eq.
S37; thus, when P > ρ, the two positive eigenvalues of L are less than one.

Proof of Result 10. Without loss of generality and for the ease of representation, we will show that, for t > 0,

v(x ; t) =
1− e−tx

1− e−t
[S38]

is monotone increasing as a function of t . Observe that

∂v

∂t
=

(
1− e−t

)
xe−tx −

(
1− e−tx

)
e−t

(1− e−t)2
. [S39]

For the monotonicity, we have to show that

f (x ; t) =
(
1− e−t) xe−tx −

(
1− e−tx) e−t ≥ 0 [S40]

when t > 0 and 0 ≤ x ≤ 1. Note that f (0; t) = 0 and f (1; t) = 0. Also,

∂f

∂x
=
(
1− e−t) (e−tx − txe−tx)− te−txe−t [S41]

or
∂f

∂x
= e−tx [(1− e−t) (1− tx )− te−t] = e−txg(x ; t), [S42]

say where for fixed t , g(x ; t) is a linear function of x , which vanishes at x0 = (1 − e−t − te−t)/t(1 − e−t). If t > 0, et > 1 + t ;
therefore, 1 > e−t(1 + t) and x0 > 0. Also, if t > 0, e−t > 1 − t , and therefore, 1 − e−t − te−t < t(1 − e−t) and x0 < 1. Since
g(0, t) = 1− e−t − te−t > 0 and g(1; t) = (1− e−t)(1− t)− te−t < 0 for t > 0, we deduce that ∂f

∂x
(x , t) > 0 for 0 < x < x0 and

∂f
∂x

(x , t) < 0 for x0 < x < 1 for all t > 0. These facts combined with f (0, t) = f (1; t) = 0 prove that f (x ; t) ≥ 0 for 0 ≤ x ≤ 1 [in
fact, f (x ; t) > 0 for 0 < x < 1], and inequality [S40] is satisfied as desired.

Proof of Result 11. The proof is based on induction on n , where to prove Eq. 45, we show that, if Xt is the number of individuals with
phenotype A at stage t of the cycle and x is the initial frequency of A, then

E

(
Xt

N
− x

)
' 1

N
ρStx (1− x ), V

(
Xt

N

)
' 1

N
tx (1− x ), [S43]

where N is the size of the population. When t = 1, [S43] coincides with the constant environment case. Assuming [S43], we go to
t + 1. Now, Xt+1 given Xt = Ny has a binomial distribution with parameters (N , y ′). Hence,

E

(
Xt+1

N
− Xt

N

∣∣∣∣Xt = Ny

)
= y ′ − y . [S44]

Following ref. 1, chap. 5, y ′ − y ' (1/N )ρst+1y(1− y), and therefore,

E

(
Xt+1

N
− Xt

N

∣∣∣∣Xt

)
' 1

N
ρst+1

Xt

N

(
1− Xt

N

)
. [S45]

Observe that

E

[
Xt

N

(
1− Xt

N

)]
= E

(
Xt

N

)
− E

[(
Xt

N

)2
]

= E

(
Xt

N

)
−V

(
Xt

N

)
−
[
E

(
Xt

N

)]2
. [S46]

By the induction assumption, V (Xt/N ) ' (1/N )tx (1− x ), and ignoring terms of order 1/N 2, we have

E

(
Xt+1

N
− Xt

N

)
' 1

N
ρst+1E

(
Xt

N

)[
1− E

(
Xt

N

)]
. [S47]

Applying [S43], we have

E

(
Xt

N

)
' x +

1

N
ρStx (1− x ),

1− E

(
Xt

N

)
' 1− x − 1

N
ρStx (1− x ),

[S48]

and ignoring terms O(1/N 2), we find
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E

(
Xt+1

N
− Xt

N

)
' 1

N
ρst+1x (1− x ). [S49]

Thus,

E

(
Xt+1

N
− x

)
= E

(
Xt+1

N
− Xt

N

)
+ E

(
Xt

N
− x

)
' 1

N
ρst+1x (1− x ) +

1

N
ρStx (1− x ),

[S50]

and since St + st+1 = St+1,

E

(
Xt+1

N
− x

)
' 1

N
ρSt+1x (1− x ) [S51]

as desired.
We now compute V (Xt+1/N ) using the induction assumption and the formula

V

(
Xt+1

N

)
= E

[
V

(
Xt+1

N

∣∣∣∣Xt

)]
+ V

[
E

(
Xt+1

N

∣∣∣∣Xt

)]
, [S52]

where by [S43],

E

(
Xt+1

N

∣∣∣∣Xt

)
' Xt

N
+

1

N
ρst+1

Xt

N

(
1− Xt

N

)
[S53]

and

V

(
Xt+1

N

∣∣∣∣Xt

)
' 1

N

Xt

N

(
1− Xt

N

)
. [S54]

Here, we used the fact that y ′(1− y ′) ' y(1− y). Now,

E

[
V

(
Xt+1

N

∣∣∣∣Xt

)]
' 1

N
E

[
Xt

N

(
1− Xt

N

)]
' 1

N
x (1− x ), [S55]

where we use the same computations as led from [S46] to [S49]:

V

[
E

(
Xt+1

N

∣∣∣∣Xt

)]
= V

[
Xt

N
+

1

N
ρst+1

Xt

N

(
1− Xt

N

)]
. [S56]

Since (Xt/N )
[
1− (Xt/N )

]
is a random variable taking values in [0,1], its variance is less than 1/4 and

V

[
1

N
ρst+1

Xt

N

(
1− Xt

N

)]
≤ 1

4N 2
ρ2s2t+1. [S57]

We ignore terms O(1/N 2), so that the random variable (1/N )ρst+1(Xt/N )
[
1− (Xt/N )

]
is almost constant. As a result,

V

[
E

(
Xt+1

N

∣∣∣∣Xt

)]
' V

(
Xt

N

)
' 1

N
tx (1− x ) [S58]

by the induction assumption. Combining [S55] and [S58] gives

V

(
Xt+1

N

)
' 1

N
x (1− x ) +

1

N
tx (1− x ) =

1

N
(t + 1)x (1− x ) [S59]

as expected.

Calculation of Stable Vertical Transmission Rate in AkBk. Here, we describe the analysis of the stability of a modifier allele m with vertical
transmission rate ρ to invasion by a modifier M with a vertical transmission rate P , as described in Eq. 32, in environmental regime
AkBl . The analysis is similar to that used in Result 8 to analyze stability in A1B1, but it is numerical, because the cases where k > 1 or
l > 1 require solving polynomials of degree > 6 to obtain closed form expressions.

The analysis includes the following steps for fixed W ,w , k , and l . First, we find the stable frequency of phenotype A with a single
modifier x∗. This is done by minimizing the expression |xk+l − x0|, where xt is defined in Eq. 9. The minimization is done by iterating
the recurrence in Eq. 9 until it converges (i.e., until the difference |xk+l −x0| is smaller than available machine precision; roughly 10−8

when subtracting similar small numbers). Second, we set the frequency vector with two modifiers to x∗ = (x∗, 1− x∗, 0, 0) (that is, to
the stable frequencies in the absence of modifier M ).

Now, we define FA(x ) by Eq. 32 with wA = W and wB = w (W > w), and similarly, we define FB (x ) with wB = W and wA = w .
Also, we define, similar to Eq. 34, F (x ) by composition

F = FB ◦ · · · ◦ FB︸ ︷︷ ︸
l times

◦FA ◦ · · · ◦ FA︸ ︷︷ ︸
k times

. [S60]
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To obtain a linear approximation of F (x ) near x∗, we calculate the Jacobian matrix of F (x ) at x = x∗,

Jij = J(x∗)ij =
∂F (x∗)i
∂xj

, [S61]

and the 2× 2 external stability matrix L = Lex is as in Eqs. S29 and S30 (note that the upper right block is 0, because x∗3 = x∗4 = 0):

J =

[
Lin 0
∗ Lex

]
. [S62]

We calculate the eigenvalues λ1>λ2 of L using the quadratic formula, as the characteristic polynomial of L has degree 2. By the
Perron–Frobenius theorem, the leading eigenvalue λ1 is real and positive. Denote by λ1(ρ,P) the resulting leading eigenvalue with
resident rate ρ and invader rate P . Note that, for any ρ ∈ (0, 1),

λ1(ρ, ρ) = 1. [S63]

The evolutionarily stable rate ρ∗ is defined to be stable to invasion; that is, for a small enough value ∂P > 0, we have

λ1(ρ∗, ρ∗ ± ∂P) < 1 = λ1(ρ∗, ρ∗), [S64]

where the equality is given by Eq. S63. Therefore,

∂λ1

∂P

(
ρ∗, ρ∗

)
= 0. [S65]

We use Brent’s (2) root-finding method to find ρ∗ that satisfies Eq. S65. If, due to numerical instability of the described numerical
process, we have

∂
λ1

∂P

(
0, 0
)
· ∂λ1

∂P

(
1, 1) > 0 [S66]

(i.e., the partial derivative sign is identical at ρ = P = 0 and ρ = P = 1), then we cannot use Brent’s (2) method. In these cases, we
assume that the partial derivative does not have a root in (0, 1), and we determine the stable rate ρ∗ by the rule

ρ∗ =

{
0 if ∂λ1

∂P

(
0, 0
)
≤ 0

1 if ∂λ1
∂P

(
0, 0
)
> 0.

[S67]

Fig. S10 shows the sensitivity of the leading eigenvalue λ1 of the external stability matrix L to changes in the invader rate P as a
function of the resident rate ρ for different choices of environmental cycles AkBk .

The numerical analysis above is fine for small k , but for large k and especially for w = 0.1, the calculation is unstable. This is probably
because when the environment is constant for a long period, most of the time the frequencies xi are very close to the boundaries (i.e.,
zero and one).

Crucially, the Jacobian J in Eq. S61 is calculated using automatic differentiation from a function that iteratively calculates F (x∗)

according to Eq. S60. Similarly, the partial derivative ∂λ1
∂P

in Eq. S65 is calculated from a function that calculates λ1 using simple
arithmetic operations. Note that automatic differentiation does not mean symbolic or numerical differentiation, which can lead to
inefficient or inaccurate estimation of J when k is not very small. Rather, from ref. 3, “Automatic differentiation is a set of techniques
for transforming a program that calculates numerical values of a function, into a program which calculates numerical values for
derivatives of that function with about the same accuracy and efficiency as the function values themselves.”

Diffusion Approximation. We compute the mean µ(x ) and the variance σ2(x ) of the change in one generation in the frequency of
phenotype A given that, at the beginning of the generation, Xt = Nx . To compute µ(x ), observe that, by Eq. 40,

x ′ − x =
wAx

w
ρ+ (1− ρ)x − x = ρx

[wA

w
− 1
]

= ρx (1− x )
wA − wB

wAx + wB (1− x )
, [S68]

since w = wAx + wB (1− x ). For the diffusion approximation, it is essential that the differential selection does not have a large effect
per individual in each time period ∆t

(
∆t ' 1

N

)
. That is, we assume that

wA − wB =
s

N
. [S69]

Then,

x ′ − x ' 1

N
ρsx (1− x ) [S70]

up to terms of order small than 1
N

. Since one generation corresponds to ∆t ' 1
N

, we conclude that

µ(x ) = ρsx (1− x ); 0 ≤ x ≤ 1. [S71]

In the same way, we can compute

σ2(x ) = x (1− x ). [S72]

1. Ewens W (2004) Mathematical Population Genetics (Springer, New York), 2nd Ed.
2. Brent RP (1971) An algorithm with guaranteed convergence for finding a zero of a

function. Comput J 14:422–425.

3. Bartholomew-Biggs M, Brown S, Christianson B, Dixon L (2000) Automatic differenti-
ation of algorithms. J Comput Appl Math 124:171–190.
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Fig. S1. Ratios of selection periods k
l that lead to fixation of phenotype A (red) or polymorphism of phenotypes A and B (blue); k and l are the numbers of

generations in which phenotypes A and B, respectively, are favored by selection. In all cases, W = 1, and w = 1 − s. A, C, E, and G are for different ρ values
and B, D, F, and H are for different s values.
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Fig. S2. Frequency of phenotype A after every two generations in selection regime A1B1. The orange line is the finite population model (Eqs. 40 and 41)
(average of 100 simulations). The blue line is the infinite population model (Eq. 21), and the green line is the solution of Q(x) = 0 (Eq. 22). In all cases, W = 1;
for the finite population model (orange lines), population size is N = 10, 000, and initial frequency of A is x0 = 0.5. A–F are for the shown values of ρ and w.

Fig. S3. Properties of stability in A1B1 selection regime. (A) Stable frequency of phenotype A and (B) stable mean fitness as functions of the vertical
transmission rate ρ and the fitness of the disfavored phenotype w. Black contour lines join ρ and w combinations that result in the same stable value. In all
cases, fitness of the favored phenotype is W = 1.
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Fig. S4. Convergence of the frequency of phenotype A to a stable polymorphism in selection regime AkBk. Comparison of dynamics starting with different
initial frequencies of phenotype A (0.01–0.99) and different k, ρ, and w values. The lines show the x frequency of phenotype A at the end of each period
after every 2k generations. In all cases, W = 1. A–L are for the specified value of k.
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Fig. S5. Frequency of phenotype A after every three generations in selection regime A1B2. Comparison of dynamics starting with different initial frequency
of phenotype A (0.01–0.99) (Figs. 1 and 7). In all cases, W = 1. A–F are for the specified values of ρ and w.

Fig. S6. Frequency of phenotype A after every 13 generations in selection regime A3B10. Comparison of dynamics starting with different initial frequency
of phenotype A (0.01–0.99). In all cases, W = 1. A–F are for the specified values of ρ and w.
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Fig. S7. Stable population mean fitness in selection regime AkBk as a function of the vertical transmission rate ρ and the number k of generations in which
phenotypes A and B are favored by selection for different selection intensities: (A) w = 0.1, (B) w = 0.5, and (C) w = 0.9. Colors represent the geometric
average of the stable population mean fitness over 2k generations calculated by iterating Eq. 9 until phenotype frequencies stabilized and for at least 1, 000
generations. Blue markers show the maximum average mean fitness for each period k. For example, with w = 0.1, ρ̂= 0 maximizes the average fitness
for k ≤ 11; then, ρ̂ increases to ρ̂≈ 0.24 and continues to decrease as k increases, down to ρ̂≈ 0.15 for k = 50 (Fig. 6). Contour lines represent ρ and k
combinations that produce the same average mean fitness. In all cases, W = 1.

Fig. S8. The geometric average of the stable population mean fitness over the 2k generation period peaks at ρ = 0 for k ≤ 30 (red, blue, and green lines)
and at ρ ≈ 0.23 for k = 31 and 32 (purple and orange lines, respectively) (Fig. 6). Inset zooms out to show that the geometric mean fitness is strictly and
significantly decreasing for ρ > 0.3 (reaching ≈ 0.7 for ρ = 1). In all cases, W = 1 and w = 0.5.

Fig. S9. Fixation probability and mean time in a finite population. (A) Fixation probability u(x) of phenotype A (Eq. 42). (B) Expected time to fixation T(x)
of phenotype A (Eq. 43) conditioned on its fixation, starting with a single copy in a population of size N. The figure compares two estimates: Wright–Fisher
simulations (blue circles) and diffusion equation approximation (green solid lines). Parameters: selection coefficient, s = wA − wB = 0.1; population size,
N = 10, 000.
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Fig. S10. Evolutionarily stable vertical transmission rate in AkBl selection regime. The figure shows ∂λ1
∂P , the sensitivity of the leading eigenvalue of the

external stability matrix L to changes in P (the vertical transmission rate of the invader allele) as a function of ρ, the vertical transmission rate of the resident
allele (details are in Evolutionary Stability of Oblique Transmission and SI Text). The shaded areas mark ρ values for which phenotype B fixes and there is no
polymorphism (Eq. 20). Without polymorphism, selection does not affect the transmission rate, and therefore, any rate in the shaded areas is neutrally stable.
In A, B, D, G, J, and M, ∂λ1

∂P < 0 at the vicinity of ρ = 0, and therefore, the stable rate is ρ* = 0. In B, C, E, F, H, I, K, and L, the stable rate ρ* can be identified

as the ρ value at which ∂λ1
∂P changes from positive to negative. In N and O, ∂λ1

∂P > 0 for all ρ values that protect polymorphism, and therefore, there are only
neutrally stable rates (in the shaded areas). Here, W = 1 and w = 0.1.
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Fig. S11. Fixation in a finite population with different ratios of selection periods k
l . Fixation probability of phenotype A when starting with a single copy in

a population of size N: u(1/N) = (1 − exp(−2ρ k−l
k+l (W − w))/(1 − exp(−2Nρ k−l

k+l (W − w)) (Eqs. 46 and 47); k and l are the numbers of generations in which
phenotypes A and B, respectively, are favored by selection. In all cases, fitness of the favored phenotype is W = 1; fitness of the unfavored phenotype is
w = 1 − s, and the population size is N = 10,000. A, C, E, and G are for the specified value of s and B, D, F, and H are for the specified value of ρ.
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Fig. S12. Consecutive fixation of modifiers that reduce the vertical transmission rate in selection regime A1B1. The figure shows results of numerical
simulations of evolution with two modifier alleles (Eq. 32). When a modifier allele fixes (frequency >99.9%), a new modifier allele is introduced with a
vertical transmission rate one order of magnitude lower (vertical dashed lines). (A, D, and G) The frequency of phenotype A in the population over time.
(B, E, and H) The frequency of the invading modifier allele over time. (C, F, and I) The population geometric mean fitness over time; Insets zoom in to show
that the mean fitness decreases slightly with each invasion. Invading alleles are introduced at frequency 0.01%; whenever their frequency drops below 0.01%,
they are reintroduced. Parameters: vertical transmission rate of the initial resident modifier allele, ρ0 = 0.1; fitness values: W = 1 and w = 0.1 (A–C), 0.5
(D–F), and 0.9 (G–I). The x axis is on a log scale, as each sequential invasion takes an order of magnitude longer to complete. D–F are the same as in Fig. 4.
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