Major transitions 2.0 and human origins and evolution

Eörs Szathmáry

DIVERSE INTELLIGENCES

Templeton World Charity Foundation

Evolutionary Systems Research Group, MTA Center for Ecological Research

Biological Institute, Eötvös University, Budapest

SZÉCHENYI

"Two books in one"

- Formation of higher-level units from lower ones (Major Transition in Individuality: MTI)
- Evolution of the storage, use and transmission of hereditary information

The royal chamber of a termite:fraternal

The origin of eukaryotic cells: egalitarian

No reproductive division of labour is possible!!!

Principles of Social Evolution

Andrew F.G. Bourke

Oxford Series in Ecology and Evolution

OSEE

Three phases of a major transition (Bourke, 2011)

Major transition examples	Social group formation	Social group maintenance	Social group transformation
Eukaryote origins	Origin of the eukaryotic cell	Control of organellar reproduction	Gene transfer from organelle to nucleus
Clonal organisms to sexual unicells	Origin of zygotes	Control of meiotic drive	Obligate sexual reproduction
Unicells to multicellular organisms	Origin of multicellularity	Control of selfish cell lineages	Early-diverging germline

• These can easily span many million years!

COLLOQUIUM PAPER

Toward major evolutionary transitions theory 2.0

Eörs Szathmáry¹

Table 1. Revised major transitions

Origin of:	Formation, maintenance, transformation phases	Transition in individuality	New type of information storage, use, and transmission	Limited transitions
Protocells	 Autocatalytic networks on the rocks cooperate Naked genes escape	MLS1 on the rocks MLS2 in compartments Chromosomes as conflict mediators	Catalysts based on informational replication arise Genetic information encapsulated in cells	
Genetic code and translation: prokaryotic cells	 Limited coding before translation (coenzyme amino acids and peptides) Early ribosomes and primitive translation Vocabulary extension by bacterial sex 	Establishment of symbiotic autocatalytic molecular networks, including complementary subcodes	Symbolic as opposed to earlier iconic hereditary system (code) Coded sexuality	21st and 22nd amino acids (selenocystein and pyrrolisine) Highly polyploid bacteria
Eukaryotic cells	 Fusion-fission cycle (early sex) Mitochondrial symbiont (before or after phagocytosis) Nucleus, meiosis, and mitosis 	Different cells come and stay together as a higher level whole	Genome composed of functionally synergistic compartments Separation of transcription from translation	Within-cell soma and germ (ciliates)
Plastids	 Engulfment of plastids Transfer of plastid genes to nucleus Posttranslational import and regulation of division 	Different cells come and stay together as a higher level whole	Genome composed of functionally synergistic compartments	Tertiary plastids Paulinella
Multicellularity (plants, animals, fungi)	 Size advantage from cohesion Programmed regulation of cell division Soma and early-sequestered germ line 	Cohesive multicellularity allows for differentiation and division of labor	Epigenetic inheritance systems with high hereditary potential	Multicellularity in other lineages Multi-multi symbioses (e.g., lichens)
Eusocial animal societies	 Origin of societies Control of conflict (dominance, punishment, policing) Dimorphic reproductive and nonreproductive castes 	Formation of (super)organisms	Animal signaling and social learning	Unicolonial ant supercolonies
Societies with natural language	 Confrontational scavenging, first words Eusociality (grandmothers) and protolanguage Cultural group selection and syntax 	Non-kin, large-sized cooperation based on negotiated division of labor Food sharing and reproductive leveling Cultural groups	Symbolic communication with complex syntax	Animal cultures

The trait group model (Wilson, 1975)

A molecular rendering of the Wilson model

ORIGIN OF LIFE

Transient compartmentalization of RNA replicators prevents extinction due to parasites

The sums for MCRM

Metabolism

Hamilton does not rule

1

0

0

Binomial coefficient	1	2
Production of X	0	a
Production of Y	0	Ь

Stochastic corrector model (SCM)

- Independently reassorting genes
- Selection for optimal gene composition between compartments
- Competition among genes within the same compartment
- Stochasticity in replication and fission generates variation on which natural selection acts
- A stationary compartment population emerges

Filial transitions: "darwinisation"

- Classical transitions: emergence of new levels of evolution by terminal addition
- De-darwinisation of the lower level
- Filial transitions: emergence of new (constrained) evolutionary system by ,,intercalation"
- "Darwinising" some components of the existing unit!

When the Darwinian dynamic reinvented itself

The EMBO Journal vol.4 no.4 pp.847-852, 1985

The generative grammar of the immune system

Niels K.Jerne M.D. FRS.

More like artificial selection!

What makes us human?

- Note the different time-scales involved
- Cultural transmission: language transmits itself as well as other things
- A novel inheritance system

Confrontational scavenging

Bickerton and Szathmáry BMC Evolutionary Biology 2011, 11:261 http://www.biomedcentral.com/1471-2148/11/261

COMMENTARY

Open Access

Confrontational scavenging as a possible source for language and cooperation

Derek Bickerton¹ and Eörs Szathmáry^{2,3,4*}

Abstract

The emergence of language and the high degree of cooperation found among humans seems to require more than a straightforward enhancement of primate traits. Some triggering episode unique to human ancestors was likely necessary. Here it is argued that confrontational scavenging was such an episode. Arguments for and against an established confrontational scavenging niche are discussed, as well as the probable effects of such a niche on language and co-operation. Finally, several possible directions for future research are suggested.

ADAM'S TONGUE How Humans Made Language How Language Made Humans DEREK BICKERTON

Toward a Macroevolutionary Theory of Human Evolution: The Social Protocell

Claes Andersson¹ · Petter Törnberg¹

The sociont

- A cultural entity *contained* in the community
- Different, often specific cultural items that are not interchangeable
- Cultural content affects group fitness
- EGALITARIAN transition
- Selection for linked "meme complexes" (cf. chromosome formation)
- Teaching and schooling

Recuerdos de mi vida (Cajal, 1917, pp. 345–350)

"At that time, the generally accepted idea that the differences between the brain of [non-human] mammals (cat, dog, monkey, etc.) and that of man are only quantitative, seemed to me unlikely and even a little offensive to human dignity...

but do not articulate language, the capability of abstraction, the ability to create concepts, and, finally, the art of inventing ingenious instruments.

seem to indicate (even admitting fundamental structural correspondences with the animals) the existence of original resources, of **something qualitatively new** which justifies the psychological nobility of Homo sapiens?...".

Candidate mechanisms of "neuronal replication"

- Local connectivity copying
- Copying of activity patterns in bistable neurons
- Path evolution
- Other?

Chrisantha Fernando

Bayes and selection (e.g. Harper, 2010)

$$P(H_i \mid E) = \frac{P(E \mid H_i)P(H_i)}{P(E)}$$

Bayesian Inference	Discrete Replicator
Prior Distribution $(P(H_1), \ldots, P(H_n))$	Population state $x = (x_1, \ldots, x_n)$
New Evidence $P(E H_i)$	Fitness landscape $f_i(x)$
Normalization $P(E)$	Mean fitness $\overline{f}(x)$
Posterior distribution $P(H_1 E), \ldots, P(H_n E)$	Population state $x' = (x'_1, \ldots, x'_n)$

RESEARCH ARTICLE

REVISED Breeding novel solutions in the brain: A model of Darwinian neurodynamics [version 2; referees: 3 approved] András Szilágyi^{1-3*}, István Zachar^{1,3,4*}, Anna Fedor¹⁻³, Harold P. de Vladar^{1,3}, Eörs Szathmáry¹⁻⁵

Evolution

- Crucial is the COPYING of patterns from one network to the other!!!
- To be able to do so requires past genetic evolution

Thanks for your attention!